1y
mmmm SCONS

Build your software, better.

SCons4.6.0

User Guide

The SCons Development Team

Version 4.6.0
Copyright © 2004 - 2023 The SCons Foundation
Publication date Released: Mon, 21 Mar 2023 12:25:39 -0400

Table of Contents

(= =0 ST PT T OPPTTR iX
L. SCONS PIINCIPIES ettt et e et e et b e et e b e e et e e e nb s iX

2. HOW t0 USE ThiS GUITEeuiiiiiiiii ettt ettt e et et e e e ne s iX

3. A Caveat About This GUIJE'S COMPIELENESSciiiiiieiiii et e s X

4. ACKNOWIBAGEMENTS ...ttt ettt e et ettt e et et e et e e e e e enb e e eeaaas X
SO0 4 | - o APPSR X

1. Building and INStAlliNg SCONSuuiiiiii ettt e et e e et eeana s 1
L1 INSAliNG PYNON ..ot 1

1.2, INSEATING SCOMNS ...ttt ettt e et e ettt e et e e e et e e b et e e e e eneas 2

1.3. Using SCons Without INSEaIlINGc..uniiiiiieiiii e 3

1.4. Running Multiple Versions of SCoNns Side-by-Sideoviiiiiiiiiiiiii e 3

2. SIMPIE BUIIAS ...ttt e et e et e et e s 5
2.1. Building SImple C / CH+ PrOgramS.cccuuuiiiiiiieeeiii ettt ettt e e et e e e et eeena e aees 5

2.2. BUIldiNG OBJECE FIIES ..ottt e ee e eees 6

2.3. SIMPIE JAVA BUILAS ..ot e et 7

2.4, Cleaning Up ATLEr @ BUITOooouuiiiiii et e e e eaeens 7

25. The SCONST T UCT Fle e ettt 8
25.1. SConst ruct Files Are Python SCripESccuuiiiiiiiiiiiiii e 8

2.5.2. SCons Builders Are Order-INdependentcooouuiiieiiiiieieii e 9

2.6. Making the SCons Output Less VErDOSEuiiiiiiiiii e 9

3. Less Simple Things to DO With BUITAScooiiiiiiiiii e 11
3.1. Specifying the Name of the Target (OULPUL) Fileuiiiiiiii e 11

3.2. Compiling MUItIple SOUICE FlESuiiiiii e e 12

3.3. Making alist of fileSWith G 0D ... e 12

3.4. Specifying Single Files VS, LiStS Of FIlESiiiiiiiiiii e 13

3.5. Making Lists Of Files EaSier 10 REAcouuiiiiiiiiieiiiii ettt 14

3.6, KEYWOIA ATQUIMIENTS .oettieiiiti ettt e et e ettt e e et e e ettt e e et et e e et et e e e e et e e e e ebaeas 14

3.7. Compiling MUIIPIE PrOgraMScouuuiiiiiie ettt et e e e e e 15

3.8. Sharing Source Files Between MUltiple Programsoiceeiiiiieiiiiiiee e 15

4. Building and Linking With LIDIariEeScooeuiiiiiiiii e e e e e e eeees 17
A1, BUIlAING LIBrariES ...t 17
4.1.1. Building Libraries From Source Code or Object FIlesccooiiiiiiiiiiiiiiii e 18

4.1.2. Building Static Libraries Explicitly: the St at i cLi brary Builderccc.ooovviiiiiiinnnnen. 18

4.1.3. Building Shared (DLL) Libraries: the Shar edLi brary Buildercccooiviiiiiiiiiiinnnnnn. 18

4.2, LinKing WIth LIDIariESeiiiiii ettt eenees 19

4.3. Finding Libraries: the $L1 BPATH Construction Variablecccooiiiiiiiiiiiiiineeceeeiii e 20

I N oo (S @ 1= ot £ SO T U PPTRPPPPT 21
5.1. Builder Methods Return Lists of Target NOUESociiiiiiiiiiiiiiiciiii e 21

5.2. Explicitly Creating File and Directory NOUESccoeuuiiiiiiiiieiiiii e 22

5.3. Printing NOA@ File NBMESottt e e e e e e enaes 22

5.4. Using a Node's File NamMe 8S @ SINGcccvuuiiiiiiiaiiii ettt 23

5.5. Get Bui | dPat h: Getting the Path From aNode or SINgcc.vuvieiiiiiiiiiiiiee e 23

B. DEPENUENCIES ... iieitie ettt ettt ettt ettt ettt ettt e e e e e 25
6.1. Deciding When an Input File Has Changed: the Deci der FUNCtONc.ocoeviiiieiiiiinieiiiiineeeens 25
6.1.1. Using Content Signatures to Decide if aFile Has Changedcccooovviiiiiiniiiiiiiniccee, 26

6.1.2. Using Time Stamps to Decide If aFile Has Changedcoovveiiiiiiieiiiiiic e 27

6.1.3. Deciding If aFile Has Changed Using Both MD Signatures and Time Stampsc......... 28

6.1.4. Extending SCons: Writing Y our Own Custom Deci der Functioncccooviiveiinnennnn. 28

6.1.5. Mixing Different Ways of Deciding If aFile Has Changedccccooiviiiiiiiiiiiiinienennnn. 30

6.2. Implicit Dependencies. The $CPPPATH Construction Variable ..., 31

6.3. Caching IMPliCit DEPENAENCIESeiiiti ittt ettt ettt e e et e et e e e e nb e e e eebnaeeeens 32

~

'—‘—' SCONS iii

6.3.1. The--inplicit-deps-changed Optionc.ccooiiiiiiiiiiiiiii e 33

6.3.2. The--inplicit-deps-unchanged Optionccccceiiiiiiiiiiiiieii e 33
6.4. Explicit Dependencies: the Depends FUNCHONcooiiiiiiiiiii i e 33
6.5. Dependencies From External Files: the Par seDepends FUNCLiONcccccciviiiiiiiiiieiiineciieenen, 34
6.6. Ignoring Dependencies: the | gnor e FUNCHIONcoouiiiiiiiiiic e 35
6.7. Order-Only Dependencies; the Requi r €S FUNCIONccoooviiiiiiiiiiiccie e 36
6.8. The Al WaySBUI | d FUNCHIONiiieiiiici e e e e e e e e e e 38
A =071 (0000101 PP 40
7.1. Using Values From the External ENVIFONMENTccouiiiiiiiiiiieiie e e e e e 41
7.2. CONSIIUCHION ENVIFONMENESutiiiiiiiieeiiiii et e e e et e et e e et e e et s e e e et e e e e et e e e e ern s 42
7.2.1. Creating a Construction Environment: the Envi r onment Functionccooceeieeine. 42
7.2.2. Fetching Vaues From a Construction EnVironmentccocoieeiiiiiiiniiii e 42
7.2.3. Expanding Values From a Construction Environment: the subst Method 44
7.2.4. Handling Problems With Value EXPanSiONccceuuieiiiiiiiiiieii e e e e e e e 44
7.2.5. Controlling the Default Construction Environment: the Def aul t Envi r onment Function
... 45
7.2.6. Multiple Construction ENVIFONMENEScivuieiiiiiiii e e eeeeee et e et e e e e e e e aane e 46
7.2.7. Making Copies of Construction Environments: the Cl one Methodccoeeiiieninnils 47
7.2.8. Replacing Values: the Repl ace Methodcooooviiiiiiiii e, 48
7.2.9. Setting Values Only If They're Not Already Defined: the Set Def aul t Method 49
7.2.10. Appending to the End of Values: the Append Methodcccoooiiiiiiiiiiniiis 49
7.2.11. Appending Unique Values. the AppendUni que Methodcooveiiiiiiiin e, 50
7.2.12. Prepending to the Beginning of Values: the Pr epend Methodcoooeiiiiiiiienennnn, 50
7.2.13. Prepending Unique Values. the Pr ependUni que Methodcoocoiiiiiiiiiiincieeennn, 51
7.2.14. Overriding Construction Variable SEttiNgScoovviiiiiiiiiiicii e 51
7.3. Controlling the Execution Environment for Issued Commandscccoeeeiiieiiiiiiiiiecinieee e 52
7.3.1. Propagating PATH From the External ENVIironmentccocoiiiiiiiiiiiiieiin e 53
7.3.2. Adding to PATH Values in the Execution EnNVIronmentccoovvviiieiiiieeiin e, 54
7.4. Using the toolpath for external TOOISc..oiiiiiiiiiii e e e 54
7.4.1. The default tool Search Pathccoveiiiii e 54
7.4.2. Providing an external directory to toolpathccooooiiiiiiiiiii 54
7.4.3. Nested Tools within atoolpathcooiiiiiii e 55
7.4.4. Using sys.path within the toolpath ..o, 55
7.4.5. Using the PyPackageDi r function to add to thetoolpathcccoooviiiiiiiin . 56
8. Automatically Putting Command-line Options into their Construction Variablescccccccoevviiiiiinennnnn. 57
8.1. Merging Options into the Environment: the Mer geFl ags Functioncccoooviiiiiiiiinennens 57
8.2. Merging Options While Creating Environment: the par se_f | ags Parameterco.cceveeennnnns 58
8.3. Separating Compile Arguments into their Variables: the Par seFl ags Functionccc.ccov.ii. 59
8.4. Finding Installed Library Information: the Par seConfi g Functioncc.occoeveiiiiiiniiinnecennn. 60
9. Controlling BUIlA OULPULiiiiiiii e e e e e e e e r e e e et e et e e et e e et s e e st e e aan e e st e eeaneeannaees 62
9.1. Providing Build Help: the Hel p FUNCLIONoouiiiiii e 62
9.2. Controlling How SCons Prints Build Commands: the $* COVSTR Variablescccceevviiiiiinnnnns 63
9.3. Providing Build Progress Output: the Pr ogr €Ss FUNCLIONccoviiiiiiiiiiiiiiii e 65
9.4. Printing Detailed Build Status: the Get Bui | dFai | ures FUnctioncccooooiveiiieiiiieiineeennnn, 67
10. Controlling a Build From the Command LiNEccooiuiiiiiiiiii e e e 69
10.1. Command-Ling OPLIONSuuiiiiuiiiiiieiiie e e et et e et e e e e e e e et e e e e et e e et e e et e e et e e eeanaeeen 69
10.1.1. Not Having to Specify Command-Line Options Each Time: the SCONSFLAGS
Environment Varialeooooiiiiiiiii e 69
10.1.2. Getting Values Set by Command-Line Options: the Get Qpt i on Function 70
10.1.3. Setting Values of Command-Line Options: the Set OQpt i on Functionccceeeevnnnnes 71
10.1.4. Strings for Getting or Setting Values of SCons Command-Line Optionsccccecevvveeee. 72
10.1.5. Adding Custom Command-Line Options. the AddQOpt i on Functionccccceeiieennnne. 73
10.2. Command-Line vari abl e=val ue Build Variablesccccooviiiiiiiiiiiiiiii e, 74
10.2.1. Controlling Command-Line Build Variablescccoooiiiiiiiiii e, 75

Iy
=== SCONS iv

10.2.2. Providing Help for Command-Line Build Variablesc..ccooiiiiiiiiiii s 76

10.2.3. Reading Build Variables From a Fileccoiiiiiiiiiiiii e 77
10.2.4. Pre-Defined Build Variable FUNCHIONSocuuiiiiiiiiiiciis e 77
10.2.5. Adding Multiple Command-Line Build Variablesat ONnceccoevviviiiiiiiiiiiciiineeieeenn, 84

10.2.6. Handling Unknown Command-Line Build Variables: the UnknownVar i abl es Function
... 85
10.3. ComMMANG-LiNg TaIGEIS .ovuuiiiiieiiieii e et e e e e e e e e e e e e e e e et e e et e et s e e et e e anneeeanns 86
10.3.1. Fetching Command-Line Targets: the COVMAND LI NE_TARGETS Variable 86
10.3.2. Controlling the Default Targets: the Def aul t FUNCLIONccocovvviiiiiiiiiiei e, 86

10.3.3. Fetching the List of Build Targets, Regardless of Origin: the BUl LD _TARGETS Variable

... 89
11. Installing Files in Other Directories: the l nst al | BUIldercccooeiiiiiiiiiiii e 91
11.1. Installing Multiple FIleS N @ DIFECIOIYuiiiiniiiiiieeiii et e e e e e e e aeaas 92
11.2. Installing a File Under a DIifferent NaMEiiiiiiiiiiiiiii e e e e e e 92
11.3. Installing Multiple Files Under Different NameSc..ooviiiiiiiiiiii e 93
11.4. Installing @ Shared Libraryco.ooiiiiiiiiiii e e e e e e e e e e e aenas 93
12. Platform-Independent File System Manipulationc.cooiiiiiiiiiiiiiiec e e e 94
12.1. Copying Files or Directories: The COPY FaCLOrYccooiiiiiiiiiiiiciie e 94
12.2. Deleting Files or Directories: The Del €t € FaCtOrycouuviiiiiiiii e 95
12.3. Moving (Renaming) Files or Directories: The Move Factoryccooveviiiiiiiiiiiiiiin e, 96
12.4. Updating the Modification Time of a File: The Touch FaCtoryccooevviiiiiiiiiiiinccieeeeeeen, 97
12.5. Creating a Directory: The MKdi I FaCtOryieiiiiiiii i e e e e 97
12.6. Changing File or Directory Permissions. The Chnod Factoryccooevviiiiiiiiiiiiccii e, 98
12.7. Executing an action immediately: the Execut @ FUNCLIONcccvviiiiiiiiiciii e, 98
13. Controlling REMOVEl Of TAIGELScvuiiiiieiii i e e e e e e e e e et e et e e e e e eanaas 100
13.1. Preventing target removal during build: the Pr eci ous FUNCLiONcccooeviiiiiiniiineciieecis 100
13.2. Preventing target removal during clean: the NoCl ean FUNCtionccooovviiiiiiniiiiiecneeeennn, 100
13.3. Removing additional files during clean: the Cl ean FUNCLiONccooeviiiiiiiieiiii e, 101
14, HierarchiCal BUILASvuiiiiiiii e e e e e e e e et e e e e et e e e e et s 102
I S0] F=Y o T o) = S 102
14.2. Path Names Are Relative to the SCoNSCri pt DIreCtOryocevviiiiiiieiiieeii e, 103
14.3. Top-Relative Path Names in Subsidiary SConscri pt Flesccooiiiiiiiiiiie e 104
14.4. ADSOIULE Path NBIMES ...t e et e e e et e e e eaa s 104
14.5. Sharing Environments (and Other Variables) Between SConscri pt Filescooooiiiiiiiinnnnnnn. 105
14.5.1. EXPorting VariablESiiieiiii e 105
14.5.2. Importing VariablESiiiiiii e 106
14.5.3. Returning Values From an SConscri pt File ..o 107
15. Separating Source and Build Trees: Variant DIr€CIONESiiviiiiiiiiiiiiieiie e e e 109
15.1. Specifying a Variant Directory Tree as Part of an SConscri pt Calc.ccooveviiiiiiiiiininns 110
15.2. Why SCons Duplicates Source Filesin a Variant Directory Treeovevviveiiiieiiiieiiiiieiiieeeiieens 111
15.3. Telling SCons to Not Duplicate Source Filesin the Variant Directory Treeccoocevvveviieeennnn. 111
15.4. The Vari ant Di 1 FUNCHION ...ooouuiiii et e et e e e 112
15.5. Using Vari ant Di r Withan SConscript Fileooocoiiiiiiiii e, 113
15.6. Using A 0b With Vari @ant Di I ...oouiiii e e e e e eaeas 113
15.7. Variant BUild EXGMPIES ...covuiiiici e e 114
16. Building From Code REPOSITOMNEScuuiiiiieiiieiiii e e e e e e e e e e e e e e e et e e et e e et e e st e e st e eaaeaannaees 116
16.1. The RepoSi t Ory MENOOcovviiiiiii e e e e aaaas 116
16.2. Finding source fileS in FEPOSITONESuuiiiiiiiii e e e e e e e e e e e e aanaees 116
16.3. Finding #i ncl ude fileSin rePOSITONIEScivviiiii e 117
16.3.1. Limitations on #i ncl ude filesin repoSitorieSc.ooveviiiiiiiiiiiii e 118
16.4. Finding the SConst ruct file in repOSItONEScccvvniiiiiiiii e 119
16.5. Finding derived fileS iN FEPOSITONESivvuiiiiiii e e e e e aeaas 119
16.6. Guaranteeing local COpIES Of fIlES ...iuuiiii i e 120
17. Extending SCons: Writing Your OWN BUIIAErScooiiniiiiiiiii e 121

Iy
=== SCONS v

18.
19.
20.

21.

22.

23.
24.

25.

26.

27.

17.1. Writing Builders That Execute External CoOmMmMandsScoevviiiiiiieiiiieiiiieeiin e e e e 121

17.2. Attaching a Builder to a Construction ENVIFONMENTcocuiiiiiiiiiiiieiiieeci e ee e e e 121
17.3. Letting SCons Handle The File SUFfIXESuiiiiiiiiii e 122
17.4. Builders That Execute Python FUNCLONSoiiiiiiiiiiiciie e e s 123
17.5. Builders That Create Actions USING @ GENEIAIONcevvuieiinieiiiieiiiieeeee e e e e e e e e e eanas 124
17.6. Builders That Modify the Target or Source Lists Using an Emitterc.occoeveiiiiiiniiiiieeennnns 125
17.7. Modifying a Builder by adding an EMIttercooiiiiiiiiiiicii e 126
17.8. Where To Put Your Custom Builders and TOOISccoeuuiiiiiiiiiiiiiiiin e 127
Not Writing a Builder: the Command BUIlAErccoouiiiiiiiiii e e 129
Extending SCons: Pseudo-Builders and the AddMethod functioncccooeeiiiiiiiiiinin e, 131
Extending SCons; Writing YOur OWN SCANNELSciuuuiiiiiieeiieeiieei e esieesteestee st seeanaesateeeaneaennaes 133
20.1. A SImple SCanner EXAMPIEcoouiii i 133
20.2. Adding a search path to a Scanner: Fi ndPat hDi 'Sooiiiiiiiiiic e 134
20.3. Using scanners With BUIIAEIScoouniiiiiiiii e e e e e 135
Multi-Platform Configuration (Autoconf FUNCLIONEIITY)ocovniiiniiiiici e 136
b2 I IR O 1 o 0 =3 @)1=t (=S 136
21.2. Checking for the Existence of Header Fil€Suviiiiiiiiiiiii e, 137
21.3. Checking for the Availability of @ FUNCLIONc.oiiiiiiii e 137
21.4. Checking for the Availability of aLibrarycooooiiiiiiiiii 138
21.5. Checking for the Availability of at ypedef ... 138
21.6. Checking the SIZe Of @ dalalyPecvvvuiiiiieii i e e e aeas 139
21.7. Checking for the Presence of @ programiceue e e e e e e e e e eanas 139
21.8. Extending SCons: Adding Y our Own Custom Checksccooeiiiiiiiiiiiiiiii e, 139
21.9. Not Configuring When Cleaning TargelSccuuviiiiiiiiieiiii e e e e e e e e e e eaaaas 141
(0= o o 1 oo I S 011 = 142
22.1. Specifying the Derived-File Cache DIreClOrycooiiiiiiiiiiiiei e e 142
22.2. Keeping Build OULPUL CONSISEENTcoviiiiiicii e e e e e e e e e e e e et e e eaeeaens 143
22.3. Not Using the Derived-File Cache for SpecifiC FileScooviiiiiiiii e 143
22.4. Disabling the Derived-File Catheco.iiiiiiiii e 144
22.5. Populating a Derived-File Cache With Already-BUilt FIl€Scoooviiiiiiiiii e 144
22.6. Minimizing Cache Contention: the - - r andomOPLIONoviiiiiiiiiieii e 145
22.7. Using a Custom CaCheDir ClasScccuuiiiiiiiiiiieiiii e et e e e e e e e e e e e e et e et e e e e aanaees 146
y Y = S = = £ 147
= (V7= = 11 T o PR 149
24.1. Building Java Class Files: the Java BUIldErcooviiiiiiiiii e 149
24.2. How SCons Handles Java DEPENTENCIESuiiiiiiiiiiiiiiii e e e e e e e e e e 149
24.3. Building Java Archive (. j ar) Files: the Jar Buildercccooiviiiiiiiiiiiii e, 150
24.4. Building C Header and Stub Files: the JavaHBuUIlderccoooiiiiiiiiini e, 151
24.5. Building RMI Stub and Skeleton Class Files: the RM CBuUildercocoooviiiiiiiiiiiiiinieeeis 152
Internationalization and localization With gELEEXEoiviiiiiii i 153
T T 1= = o 0T (= P 153
IS 4] o L o] ()= AP 153
MiSCEIlaNEOUS FUNCHIONAIITYuuiiiii i e e e e e e et e e e e e e e et e e eaneeeaaaas 159
26.1. Verifying the Python Version: the Ensur ePyt honVer si on Functioncccoocviivieien. 159
26.2. Verifying the SCons Version: the Ensur eSConsVer si on Functionccooeeviviiiieiinnennnn. 159
26.3. Explicitly Terminating SCons While Reading SConscr i pt Files: the Exi t Function 160
26.4. Searching for Files: the Fi ndFi | @ FUNCLONcccoviiiiiiiii e 160
26.5. Handling Nested Lists: the Fl at t en FUNCHIONcooviiiiiiiiiii e, 162
26.6. Finding the Invocation Directory: the Get LaunchDi r FUNCtioncccooeviiiiiiiiieiiinceinnen, 163
26.7. Declaring Additional Outputs: the Si deEf f ect Functionccooooiiiiiiiiiiiiie e, 164
26.8. Virtual environments (VIFUGIENVS)ciiuniiiiiiiii e e e e e e e e e e et e e e e e e aenas 166
Using SCons with other build tO0ISiiiiiiiii e 167
27.1. Creating a Compilation Datalaseoeiviiiiiiiieii e e 167
A7 N[o =W =10 1 (o I = 0 T= = o G PP 169

Iy
=== SCONS vi

22 T I (010 o] == aTo o) oo 171

28.1. Why is That Target Being Rebuilt? the - - debug=expl ai n Optionccoooeviiiiiiiiiiiieeinns 171
28.2. What's in That Construction Environment? the Dunp Methodcocooiiiiiiiiiii e, 173
28.3. What Dependencies Does SCons Know About?the--tree Optionc.cccoviviiiiiiiieiiineiinenns 178
28.4. How is SCons Constructing the Command Lines It Executes? the - - debug=pr esub Option 184
28.5. Where is SCons Searching for Libraries? the - - debug=fi ndl i bs Optioncc.ccoen. 184
28.6. Where is SCons Blowing Up? the - - debug=st ackt race Optioncccocecieeviiieiiiiiennnnnnns 185
28.7. How is SCons Making Its Decisions? the - - t askmast ertrace Optioncccccoeveviieennnnnn. 185
28.8. Watch SCons prepare targets for building: the - - debug=pr epar e Optionc..ceevevinns 187
28.9. Why is afile disappearing? the - - debug=dupl i cat e Optionccooveiiiiiiiiiiiiceeeenn, 187
28.10. KEED It SIMPIE oot 187
A. CONSITUCHION VaBDIES ...t et e e et e e ettt e e e e et reeeettaeeeeranaeaeees 189
2 ST (= PSP 264
3 1o S PPRPPIN: 294
D. Functions and ENvironment MEthOOSoiiiiiiiiiiiiii e e e 310
[o =g To [T o R @0 T) N I S T PP 349

Iy
=== SCONS vii

List of Examples

E.1. Wildcard globbing to create alist Of fIilenamesoooiiiiiiiiii e 349
E.2. Filename extension SUBSHITULIONiiiiiiiiiii et e 349
E.3. Appending a path prefix to alist of filleNamMEScooouuiiiiiii e 349
E.4. Substituting a path prefix with another 0Ne ... 349
E.5. Filtering a filename list to exclude/retain only a specific set of eXtensionsccceeiveveiiiieiiiiiiieeennnn, 349
E.6. The "backtick function": run a shell command and capture the QULPULccooviiiiiiiiiiieiiiiiieeeiiieees 349
E.7. Generating source code: how code can be generated and used by SCoNScoovviiiiiiiiiiiiiien, 350
~

'—‘—' SCONS viii

SCons Principles

Preface

Thank you for taking the time to read about SCons. SCons is a modern software construction too - a software utility
for building software (or other files) and keeping built software up-to-date whenever the underlying input files change.

The most distinctive thing about SCons is that its configuration files are actually scripts, written in the Python
programming language. Thisisin contrast to most alternative build tools, which typically invent a new language to
configure the build. SCons still has a learning curve, of course, because you have to know what functions to call to
set up your build properly, but the underlying syntax used should be familiar to anyone who has ever looked at a
Python script.

Paradoxically, using Python as the configuration file format makes SCons easier for non-programmers to learn than
the cryptic languages of other build tools, which are usually invented by programmers for other programmers. Thisis
in no small part due to the consistency and readability that are hallmarks of Python. It just so happens that making a
real, live scripting language the basis for the configuration files makes it a snap for more accomplished programmers
to do more complicated things with builds, as necessary.

1. SCons Principles

There are afew overriding principles the SCons team tries to follow in the design and implementation.

Correctness
First and foremost, by default, SCons guarantees a correct build even if it means sacrificing performance alittle.
We strive to guarantee the build is correct regardless of how the software being built is structured, how it may
have been written, or how unusual the tools are that build it.

Performance
Given that the build is correct, we try to make SCons build software as quickly as possible. In particular, wherever
we may have needed to slow down the default SCons behavior to guarantee a correct build, we also try to make
it easy to speed up SCons through optimization options that let you trade off guaranteed correctness in all end
cases for a speedier build in the usual cases.

Convenience
SConstriesto do as much for you out of the box as reasonable, including detecting the right tools on your system
and using them correctly to build the software.

In anutshell, we try hard to make SCons just "do the right thing" and build software correctly, with a minimum of
hassles.

2. How to Use this Guide

This guide intends to coach you how to use SCons effectively and efficiently, by providing a range of examples and
usage scenarios. Assuch it is not exactly atutorial (as usually those build a single example topic from start to finish),
but if you are just starting with SConsit is recommended you step through thefirst 10 chaptersin sequence as thiswill
giveasolid grounding in the principles of working with SCons. If you follow that trail, you can feel freetoinitially skip
sections on extending SCons, such as Writing your own Decider Function, and come back to those if the need arises.

The remaining chapters cover more advanced topics that not all build systems will need, and can be used in more of
asingle-topic way, to read if you find you need that particular information.

It is often useful to keep SCons man page open in a separate browser tab or window to refer to as a complement to this
Guide, as the User Guide does not attempt to provide every detail. While this Guide's Appendices A-D do duplicate

Iy
=== SCONS iX

A Caveat About This Guide's Compl eteness

information that appearsin the man page (thisisto allow intra-document links to definitions of construction variables,
builders, tools and environment methods to work), the rest of the man page is unique content.

3. A Caveat About This Guide's Completeness

SCons is a volunteer-run open source project. As such, the SCons documentation isn't dways completely up-to-date
with al the available features - somehow it's almost harder to write high quality, easy to use documentation than it
is to implement a feature in software. In other words, there may be alot that SCons can do that isn't yet covered in
this User's Guide.

Although this User's Guide may not be as complete as it could be, the development process does emphasize making
surethat the SCons man pageiskept up-to-date with new features. So if you'retrying to figure out how to do something
that SCons supports but can't find enough (or any) information here, it would be worth your while to look at the man
pageto seeif theinformation is covered there. And if you do, maybe you'd even consider contributing a section to the
User's Guide so the next person looking for that information won't have to go through the same thing...?

4. Acknowledgements

SCons would not exist without a lot of help from alot of people, many of whom may not even be aware that they
helped or served as inspiration. So in no particular order, and at the risk of leaving out someone:

First and foremost, SCons owes a tremendous debt to Bob Sidebotham, the original author of the classic Perl-based
Constool which Bob first rel eased to the world back around 1996. Bob'swork on Cons classic provided the underlying
architecture and model of specifying a build configuration using areal scripting language. My real-world experience
working on Cons informed many of the design decisions in SCons, including the improved parallel build support,
making Builder objects easily definable by users, and separating the build engine from the wrapping interface.

Greg Wilson was instrumental in getting SCons started as a real project when he initiated the Software Carpentry
design competition in February 2000. Without that nudge, marrying the advantages of the Cons classic architecture
with the readability of Python might have just stayed no more than a nice idea.

The entire SCons team have been absolutely wonderful to work with, and SCons would be nowhere near as useful a
tool without the energy, enthusiasm and time peopl e have contributed over the past few years. The"coreteam” of Chad
Austin, Anthony Roach, Bill Deegan, Charles Crain, Steve Leblanc, Greg Noel, Gary Oberbrunner, Greg Spencer and
Christoph Wiedemann have been great about reviewing my (and other) changes and catching problems before they
get in the code base. Of particular technical note: Anthony's outstanding and innovative work on the tasking engine
has given SCons avastly superior parallel build model; Charles has been the master of the crucial Node infrastructure;
Christoph'swork on the Configureinfrastructure has added crucial Autoconf-like functionality; and Greg has provided
excellent support for Microsoft Visual Studio.

Specia thanks to David Snopek for contributing his underlying "Autoscons' code that formed the basis of Christoph's
work with the Configure functionality. David was extremely generous in making this code available to SCons, given
that heinitially released it under the GPL and SConsis released under aless-restrictive MIT-style license.

Thanks to Peter Miller for his splendid change management system, Aegis, which has provided the SCons project
with arobust development methodology from day one, and which showed me how you could integrate incremental
regression tests into a practical development cycle (years before eXtreme Programming arrived on the scene).

And last, thanks to Guido van Rossum for his elegant scripting language, which is the basis not only for the SCons
implementation, but for the interface itself.

5. Contact

The best way to contact people involved with SCons, is through the SCons mailing lists.

Iy
=== SCONS X

Contact

If you want to ask general questions about how to use SCons send email to <scons- user s@cons. or g>.
If you want to contact the SCons development community directly, send email to <scons- dev@cons. or g>.

For quicker, informal questions, discussion, etc. the project operated a Discord server at https://discord.gg/bXVpWAyY
and aLibera.chat IRC channel at https://web.libera.chat/#scons (the former channel at irc.freenode.net isnow unused).
Certain discussions may also be moved by administrators from mailing list or chat to GitHub Discussions [https:/
github.com/SCons/scons/discussions] for greater permanence and easier finding.

Iy
=== SCONS Xi

https://discord.gg/bXVpWAy
https://web.libera.chat/#scons
https://github.com/SCons/scons/discussions
https://github.com/SCons/scons/discussions
https://github.com/SCons/scons/discussions

1 Building and Installing
SCons

This chapter will take you through the basic steps of installing SCons so you can use it for your projects. Before that,
however, this chapter will also describe the basic steps involved in installing Python on your system, in case that is
necessary. Fortunately, both SCons and Python are easy to install on ailmost any system, and Python already comes
installed on many systems.

1.1. Installing Python

Because SCons is written in the Python programming language, you need to have a Python interpreter available on
your system to use SCons. Before you try to install Python, check to seeif Python is already available on your system
by typing pyt hon -V (capital V') or pyt hon --versi on at your system's command-line prompt. For Linux/
Unix/MacOS/BSD type systems this looks like:

$ python -V
Pyt hon 3.9. 15

If you get aversion like 2.7.x, you may need to try using the name python3 - current SCons no longer works with
Python 2.

Note to Windows users: there are a number of different ways Python can be installed or invoked on Windows, it is
beyond the scope of this guide to unravel all of them. Some have an additional program called the Python launcher
(described, somewhat technically, in PEP 397 [https://www.python.org/dev/peps/pep-0397/]): try using the command
name py instead of python, if that is not available drop back to trying python

C\>py -V
Pyt hon 3.9. 15

If Python is not installed on your system, or is not findable in the current search path, you will see an error message
stating something like" conmmand not found" (on UNIX or Linux) or "' pyt hon' is not recognized
as an internal or external conmand, operable progam or batch file" (onWindows
cmd). In that case, you need to either install Python or fix the search path before you can install SCons.

https://www.python.org/dev/peps/pep-0397/
https://www.python.org/dev/peps/pep-0397/

Installing SCons

The link for downloading Python installers (Windows and Mac) from the project's own website is. https://
www.python.org/download. There are useful system-specific entries on setup and usage to be found at: https./
docs.python.org/3/using

For Linux systems, Python is almost certainly available as a supported package, probably installed by default; thisis
often preferred over installing by other means as the system package will be built with carefully chosen optimizations,
and will be kept up to date with bug fixes and security patches. Infact, the Python project itself doesnot build installers
for Linux for thisreason. Many such systems have separate packagesfor Python 2 and Python 3 - make sure the Python
3 packageisinstalled, as the latest SCons requires it. Building from source may still be a useful option if you need a
specific version that is not offered by the distribution you are using.

Recent versions of the Mac no longer come with Python pre-installed; older versions came with a rather out of date
version (based on Python 2.7) which is insufficient to run current SCons. The python.org installer can be used on the
Mac, but there are aso other sources such as MacPorts and Homebrew. The Anaconda installation also comes with
abundled Python.

Windows has even more choices. The Python.org installer isatraditional . exe style; the same softwareisalso released
as a Windows application through the Microsoft Store. Several alternative builds also exist such as Chocolatey and
ActiveState, and, again, aversion of Python comes with Anaconda.

SCons will work with Python 3.6 or later. If you need to install Python and have a choice, we recommend using the
most recent Python version available. Newer Python versions have significant improvements that help speed up the
performance of SCons.

1.2. Installing SCons

The recommended way to install SCons is from the Python Package Index (PyPI [https:.//pypi.org/project/SCons/]):
% python -mpip install scons

If you prefer not to install to the Python system location, or do not have privilegesto do so, you can add aflag toinstall
to alocation specific to your own account and Python version:

% python -mpip install --user scons

For those users using Anaconda or Miniconda, use the conda installer instead, so the sconsinstall location will match
the version of Python that system will be using. For example:

% conda install -c conda-forge scons

If you need a specific version of SCons that is different from the current version, pi p has a version option (e.g.
python -mpip install scons==3. 1. 2), or you can follow the instructionsin the following sections.

SCons does comes pre-packaged for installation on many Linux systems. Check your package installation system
to see if there is an up-to-date SCons package available. Many people prefer to install distribution-native packages
if available, as they provide a central point for management and updating; however not al distributions update in a
timely fashion. During the still-ongoing Python 2 to 3 transition, some distributions may still have two SCons packages
available, one which uses Python 2 and one which uses Python 3. Since the latest scons only runs on Python 3, to get
the current version you should choose the Python 3 package.

Iy
=== SCONS 2

https://www.python.org/download
https://www.python.org/download
https://docs.python.org/3/using
https://docs.python.org/3/using
https://pypi.org/project/SCons/
https://pypi.org/project/SCons/

Using SCons Without Installing

1.3. Using SCons Without Installing

Y oudon't actually need to "install" SConsto useit. Nor do you need to "build" it, unlessyou areinterested in producing
the SCons documentation, which does use several tools to produce HTML, PDF and other output formats from files
in the source tree. All you need to do is call the scons. py driver script in alocation that contains an SCons tree,
and it will figure out therest. Y ou can test that like this:

$ python /path/to/unpacked/scripts/scons. py --version

To make use of an uninstalled SCons, the first step is to download either the scons-4.6.0.tar. gz or
scons- 4. 6. 0. zi p, which are available from the SCons download page at https://scons.org/pages/download.html.
Thereisalsoascons- | ocal bundleyou can make useof. It isarranged alittle bit differently, with theideathat you
can include it with your own project if you want people to be able to do builds without having to download or install
SCons. Finally, you can aso use a checkout of the git tree from GitHub at alocation to point to.

Unpack the archive you downloaded, using a utility like tar on Linux or UNIX, or WinZip on Windows. This will
create a directory called scons- 4. 6. 0, usually in your local directory. The driver script will be in a subdirectory
named scri pt s, unlessyou are using scons- | ocal , in which case it will be in the top directory. Now you only
need to call scons. py by giving afull or relative path to it in order to use that SCons version.

Note that instructions for older versions may have suggested running pyt hon setup. py install to"build
and install" SCons. This is no longer recommended (in fact, it is not recommended by the wider Python packaging
community for any end-user installations of Python software). There is a set up. py file, but it is only tested and
used for the automated procedure which prepares an SCons bundle for making arelease on PyPl, and even that is not
guaranteed to work in future.

1.4. Running Multiple Versions of SCons Side-
by-Side

In some cases you may need severa versions of SCons present on a system at the same time - perhaps you have an
older project to build that has not yet been "ported” to a newer SCons version, or maybe you want to test anew SCons
release side-by-side with a previous one before switching over. The use of an "uninstalled" package as described in
the previous section can be of use for this purpose.

Another approach to multiple versions is to create Python virtualenvs, and install different SCons versions in each.
A Python virtual environment is a directory with an isolated set of Python packages, where packages you install/
upgrade/removeinside the environment do not affect anything outsideit, and those you install/upgrade/remove outside
of it do not affect anything inside it. In other words, anything you do with pip in the environment stays in that
environment. The Python standard library provides amodule called venv for creating these (https://docs.python.org/
ellibrary/venv.html), although there are also other tools which provide more precise control of the setup.

Using a virtualenv can be useful even for a single version of SCons, to gain the advantages of having an isolated
environment. It also gets around the problem of not having administrative privileges on a particular system to install
adistribution package or use pip to install to a system location, as the virtualenv is completely under your control.

The following outline shows how this could be set up on a Linux/POSIX system (the syntax will be a bit different
on Windows):

$ create virtual env naned scons3
$ create virtual env naned scons4

Iy
=== SCONS 3

https://scons.org/pages/download.html
https://docs.python.org/e/library/venv.html
https://docs.python.org/e/library/venv.html

Running Multiple Versions of SCons Side-by-Side

source scons3/bin/activate

pip install scons==3.1.2

deacti vate

source scons4/ bin/activate

pip install scons

deacti vate

activate a virtual env and run 'scons' to use that version

R R e A T e T T

Iy
=== SCONS 4

2 Simple Builds

The single most important thing you do when writing a build system for your project is to describe the "what": what
you want to build, and which files you want to build it from. And, in fact, smpler builds may need no more. In this
chapter, you will see several examples of very simple build configurations using SCons, which will demonstrate how
easy SCons makes it to build programs on different types of systems.

2.1. Building Simple C/ C++ Programs

Here'sthe ubiquitous "Hello, World!" [https://en.wikipedia.org/wiki/%22Hello, World!%22 program] programin C:

#i ncl ude <stdi 0. h>
i nt
mai n()

{
}

printf("Hello, worldl\n");

And here'show to build it using SCons. Save the code aboveinto hel | o. ¢, and enter the following into afile named
SConstruct :

Program(' hello.c")

This minimal build file gives SCons three key pieces of information: what you want to build (a program); what you
want to call that program (its base name will be hel | 0), and the source file you want it built from (the hel | o. ¢
file). Pr ogr amisaBuilder, an SCons function that you use to instruct SCons about the "what" of your build.

That's it. Now run the scons command to build the program. On a POSIX-compliant system like Linux or UNIX,
you'll see something like:

% scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 hello.o -c hello.c

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program

Building Object Files

cc -0 hello hello.o
scons: done buil ding targets.

On a Windows system with the Microsoft Visual C++ compiler, you'll see something like:

C.\ >scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.
scons: Building targets ...

cl /Fohello.obj /c hello.c /nol ogo

I ink /nologo /QUT: hel | 0. exe hel | 0. obj
enbedMani f est ExeCheck(target, source, env)
scons: done buil ding targets.

Noticethat SCons deduced quite abit here: it figured out the name of the program to build, including operating system
specific suffixes (hel | o or hel | 0. exe), based off the basename of the source file; it knows an intermediate object
file should be built (hel | 0. 0 or hel | 0. obj); and it knows how to build those things using the compiler that is
appropriate on the system you're using. It was not necessary to instruct SCons about any of those details. Thisis an
example of how SCons makes it easy to write portable software builds.

For the programming languages SCons already knows about, it will mostly just figureit out. Here'sthe "Hello, World!"
example in Fortran:

program hel | o
print *, 'Hello, World!"
end program hell o

Progran(' hello', 'hello.f90")

$ scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

gfortran -o hello.o -c hello.f90
gfortran -o hello hello.o

scons: done buil ding targets.

2.2. Building Object Files

ThePr ogr ambuilder isonly one of many builders(also called abuilder method) that SCons providesto build different
types of files. Another is the Obj ect builder method, which tells SCons to build an object file from the specified
sourcefile:

oject (' hello.c")

Now when you run the scons command to build the program, it will build just the hel | 0. o object file on a POSIX
system:

Iy
=== SCONS 6

Simple Java Builds

% scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 hello.o -c hello.c

scons: done buil ding targets.

Andjustthehel | 0. obj object file on a Windows system (with the Microsoft Visual C++ compiler):

C.\ >scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

cl /Fohello.obj /c hello.c /nol ogo
scons: done buil ding targets.

(Note that this guide will not continue to provide duplicate side-by-side POSIX and Windows output for all of the
examples. Just keep in mind that, unless otherwise specified, any of the examples should work equally well on both
types of systems.)

2.3. Simple Java Builds

SCons also makes building with Java extremely easy. Unlike the Pr ogr amand Obj ect builder methods, however,
the Java builder method requires that you specify the name of a destination directory in which you want the class
files placed, followed by the source directory in which the. j ava fileslive:

Java(' cl asses', 'src')

If the sr c directory contains asingle hel | o. j ava file, then the output from running the scons command would
look something like this (on a POSIX system):

% scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.

scons: Building targets ...

javac -d classes -sourcepath src src/hello.java
scons: done buil ding targets.

Java builds will be covered in much more detail, including building a Java archive (. j ar) and other types of files,
in Chapter 24, Java Builds.

2.4. Cleaning Up After a Build

For cleaning up your build tree, SCons provides a "clean" mode, selected by the - ¢ or - - cl ean option when you
invoke SCons. SCons selects the same set of targets it would in build mode, but instead of building, removes them.
That means you can control what is cleaned in exactly the same way as you control what gets built. If you build the C
example above and then invoke scons - ¢ afterwards, the output on POSIX looks like:

% scons
scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.

Iy
=== SCONS 7

The SConst r uct File

scons: Building targets ...

cc -0 hello.o -c hello.c

cc -0 hello hello.o

scons: done buil ding targets.

% scons -c

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Cl eaning targets ...

Renmoved hel | 0. 0

Renmoved hel |l o

scons: done cl eani ng targets.

And the output on Windows looks like:

C.\ >scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

cl /Fohello.obj /c hello.c /nol ogo
link /nol ogo /QUT: hel | 0. exe hel | 0. obj
enbedMani f est ExeCheck(target, source, env)
scons: done buil ding targets.
C.\>scons -c

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Cl eaning targets ...

Renoved hel | o. obj

Rermoved hel | 0. exe

scons: done cl eani ng targets.

Notice that SCons changes its output to tell you that it is Cl eaning targets ... and done cl eaning
targets.

2.5. The SConstruct File

If you're used to build systemslike Make you've already figured out that the SConst r uct fileisthe SConsequivalent
of aMakefi | e. Thatis, the SConst r uct fileistheinput file that SCons reads to control the build.

2.5.1. SConst ruct Files Are Python Scripts

Thereis, however, an important difference between an SConst r uct fileand aMakef i | e: the SConst ruct file
is actually a Python script. If you're not already familiar with Python, don't worry. This User's Guide will introduce
you step-by-step to the relatively small amount of Python you'll need to know to be able to use SCons effectively.
And Python isvery easy to learn.

One aspect of using Python as the scripting language is that you can put comments in your SConst r uct fileusing
Python's commenting convention: everything between a # character and the end of the line will be ignored (unless
the character appears inside a string constant).

Arrange to build the "hell o" program
Program("hell o.c") # "hello.c" is the source file.
Pr ogr am("#goodbye. c") # the # in "#goodbye" does not indicate a comment

Iy
=== SCONS 8

SCons Builders Are Order-Independent

You'll see throughout the remainder of this Guide that being able to use the power of areal scripting language can
greatly simplify the solutions to complex requirements of real-world builds.

2.5.2. SCons Builders Are Order-Independent

One important way in which the SConst r uct file is not exactly like a normal Python script, and is more like a
Makef i | e,isthat the order in which the SCons Builder functions are called in the SConst r uct file does not affect
the order in which SCons actually builds the programs and object files you want it to build. 1. In other words, when
you call the Pr ogr ambuilder (or any other builder method), you're not telling SCons to build the program at that
moment. Instead, you're telling SCons what you want accomplished, and it's up to SCons to figure out how to do that,
and to take those stepsif/when it's necessary. you'll learn more about how SCons decides when building or rebuilding
atarget is necessary in Chapter 6, Dependencies, below.

SCons reflects this distinction between calling a builder method like Pr ogr amand actually building the program
by printing the status messages that indicate when it's "just reading" the SConst r uct file, and when it's actually
building the target files. This is to make it clear when SCons is executing the Python statements that make up the
SConst r uct file, and when SConsis actually executing the commands or other actions to build the necessary files.

Let's clarify thiswith an example. Python hasapr i nt function that prints astring of characters to the screen. If you
put pri nt callsaround the callsto the Pr ogr ambuilder method:

print("Calling Program(' hello.c')")
Progran(' hello.c")

print("Calling Program('goodbye.c')")
Pr ogr anm(' goodbye. c')

print("Finished calling Program()")

Then when you execute SCons, you will see the output from calling the pri nt function in between the messages
about reading the SConscr i pt files, indicating that is when the Python statements are being executed:

% scons

scons: Readi ng SConscript files ...
Call'ing Progran('hello.c')

Cal I'i ng Progran{' goodbye. c')

Fi ni shed cal I i ng Progran()

scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 goodbye.o -c goodbye. c

cc -0 goodbye goodbye. o

cc -0 hello.o -c hello.c

cc -0 hello hello.o

scons: done buil ding targets.

Notice that SCons built the goodbye program first, even though the "reading SConscri pt " output shows that
Program(' hel |l 0. c') wascaledfirstinthe SConst r uct file.

2.6. Making the SCons Output Less Verbose

You've already seen how SCons prints some messages about what it's doing, surrounding the actual commands used
to build the software:

4n programming parlance, the SConst r uct file is declarative, meaning you tell SCons what you want done and let it figure out the order in
which to do it, rather than strictly imperative, where you specify explicitly the order in which to do things.

Iy
=== SCONS 9

Making the SCons Output Less Verbose

C.\ >scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.
scons: Building targets ...

cl /Fohello.obj /c hello.c /nol ogo

link /nol ogo /QUT: hel | 0. exe hel | 0. obj
enbedMani f est ExeCheck(target, source, env)
scons: done buil ding targets.

These messages emphasize the order in which SCons doesits work: all of the configuration files (generically referred
toas SConscr i pt files) are read and executed first, and only then are the target files built. Among other benefits,
these messages help to distinguish between errors that occur while the configuration files are read, and errors that
occur while targets are being built.

One drawback, of course, is that these messages clutter the output. Fortunately, they're easily disabled by using the
- Qoption when invoking SCons:

C.\>scons -Q

cl /Fohello.obj /c hello.c /nol ogo

Iink /nol ogo /QUT: hel | 0. exe hel | 0. obj
enbedMani f est ExeCheck(target, source, env)

So this User's Guide can focus on what SConsis actually doing, the - Qoption will be used to remove these messages
from the output of all the remaining examplesin this Guide.

Iy
=== SCONS 10

3 Less Simple Things to Do
With Builds

Of course, most builds are more complicated than in the previous chapter. In this chapter, you will learn about builds
that incorporate multiple source files, and then about building multiple targets that share some source files.

3.1. Specifying the Name of the Target (Output)
File

You've seen that when you call the Pr ogr ambuilder method, it builds the resulting program with the same base
name as the source file. That is, the following call to build an executable program from the hel | 0. ¢ source file will
build an executable program named hel | 0 on POSIX systems, and an executable program named hel | 0. exe on
Windows systems:

Program(' hello.c")

If you want to build a program with a different base name than the base of the source file name (or even the same
name), you simply put the target file name to the | eft of the source file name:

Program(' new_hello', '"hello.c")

SConsrequiresthetarget file namefirst, followed by the sourcefile name, so that the order mimicsthat of an assignment
statement in most programming languages, including Python: "t arget = source fil es". For an dternative
way to supply thisinformation, see Section 3.6, “Keyword Arguments”.

Now SCons will build an executable program named new_hel | o when run on aPOSIX system:

% scons -Q
cc -0 hello.o -c hello.c
cc -o new hello hello.o

And SCons will build an executable program named new_hel | 0. exe when run on a Windows system:

C.\>scons -Q

Compiling Multiple Source Files

cl /Fohello.obj /c hello.c /nol ogo
link /nol ogo /QUT: new_hel | 0. exe hel |l 0. obj
enbedMani f est ExeCheck(target, source, env)

3.2. Compiling Multiple Source Files

You've just seen how to configure SConsto compile a program from asingle sourcefile. It's more common, of course,
that you'll need to build a program from many input source files, not just one. To do this, you need to put the source
filesin a Python list (enclosed in square brackets), like so:

Program(['prog.c', 'filel.c', '"file2.c'])

A build of the above example would look like:

% scons -Q

cc -o filel.o -c filel.c

cc -o file2.0 -c file2.c

CC -0 prog.o -c prog.c

cc -0 prog prog.o filel.o file2.0

Notice that SCons deduces the output program name from the first source file specified in the list--that is, because the
first source filewas pr og. ¢, SCons will nhame the resulting program pr og (or pr og. exe on a Windows system).
If you want to specify a different program name, then (as described in the previous section) you slide the list of source
files over to the right to make room for the output program file name. Here is the updated example:

Program(' programi, ['prog.c', 'filel.c', 'file2.c'])

On Linux, abuild of this example would look like:

% scons -Q

cc -o filel.o -c filel.c

cc -o file2.0 -c file2.c

CC -0 prog.o -c prog.c

cc -0 programprog.o filel.o file2.0

Or on Windows:

C.\>scons -Q

cl /Fofilel.obj /c filel.c /nol ogo

cl /Fofile2.0bj /c file2.c /nol ogo

cl /Foprog.obj /c prog.c /nol ogo

link /nol ogo /OUT: program exe prog.obj filel.obj file2.obj
enbedMani f est ExeCheck(target, source, env)

3.3. Making a list of files with A ob

You can aso use the @ ob function to find al files matching a certain template, using the standard shell pattern
matching characters* (to match everything), ? (to match asingle character) and[abc] tomatchany of a,borc.[!
abc] isalso supported, to match any character except a, b or ¢. This makes many multi-source-file builds quite easy:

Iy
=== SCONS 12

Specifying Single Files Vs. Lists of Files

Program(' programi, G ob('*.c'))

A ob has powerful capahilities - it matches even if the file does not currently exist, but SCons can determine that it
would exist after abuild. Y ou will meet it again reading about variant directories (see Chapter 15, Separating Source
and Build Trees: Variant Directories) and repositories (see Chapter 16, Building From Code Repositories).

3.4. Specifying Single Files Vs. Lists of Files

Y ou've now seen two ways to specify the source for a program, one with alist of files:
Program('hello', ['filel.c', '"file2.c'])

And onewith asinglefile:

Program(' hell o', '"hello.c'")

You can actually put asingle file namein alist, too, which you might prefer just for the sake of consistency:
Program(' hello', ['hello.c'])

SCons functionswill accept asingle file name in either form. In fact, internally, SCons treats all input aslists of files,
but allows you to omit the square brackets to cut down alittle on the typing when there's only a single file name.

I mportant

Although SCons functions are forgiving about whether or not you use astring vs. alist for asinglefile name,
Python itself is more strict about treating lists and strings differently. So where SCons allows either a string
or list:

The following two calls both work correctly:
Progran(' progranil', 'programl.c')
Progran(' progran', ['progranR.c'])

Trying to do "Python things' that mix strings and lists will cause errors or lead to incorrect results:

common_sources = ['filel.c', "file2.c']

THE FOLLOW NG | S | NCORRECT AND GENERATES A PYTHON ERRCR
BECAUSE I T TRIES TO ADD A STRING TO A LI ST:
Program(' progranil', comon_sources + 'progranil.c')

The foll owi ng works correctly, because it's adding two
lists together to make anot her |ist.
Program(' progran®', comon_sources + ['progran?.c'])

Iy
=== SCONS 13

Making Lists of Files Easier to Read

3.5. Making Lists of Files Easier to Read

One drawback to the use of a Python list for source files is that each file name must be enclosed in quotes (either
single quotes or double quotes). This can get cumbersome and difficult to read when the list of file names is long.
Fortunately, SCons and Python provide a number of waysto make sure that the SConst r uct file stays easy to read.

To make long lists of file names easier to deal with, SCons provides a Spl i t function that takes a quoted list of
file names, with the names separated by spaces or other white-space characters, and turnsit into alist of separate file
names. Using the Spl i t function turns the previous example into:

Progran(' programi, Split('main.c filel.c file2.c'))

(If you're already familiar with Python, you'll have realized that this is similar to the spl i t () method of Python
string objects.. Unlike the spl i t () method, however, the Spl i t function does not require a string as input and
will wrap up a single non-string object in alist, or return its argument untouched if it's already a list. This comesin
handy as a way to make sure arbitrary values can be passed to SCons functions without having to check the type of
the variable by hand.)

Putting the call to the Spl i t function inside the Pr ogr amcall can also be a little unwieldy. A more readable

alternative is to assign the output from the Spl i t call to a variable name, and then use the variable when calling
the Pr ogr amfunction:

src_files = Split('min.c filel.c file2.c")
Program(' program, src_files)

Lastly, the Spl i t function doesn't care how much white space separates the file names in the quoted string. This
alows you to create lists of file names that span multiple lines, which often makes for easier editing:

src_files = Split("""

mai n. ¢

filel.c

file2.c
")

Program(' program, src_files)

(Notethisexample usesthe Python "triple-quote” syntax, which allows a string to span multiple lines. The three quotes
can be either single or double quotes as long as they match.)

3.6. Keyword Arguments

SCons also alows you to identify the output file and input source files using Python keyword argumentst ar get and
sour ce. A keyword argument is an argument preceded by an identifier, of the form nane=val ue, in afunction
call. The usage looks like this exampl e:

src_files = Split('"min.c filel.c file2.c")
Program(target = program, source=src_files)

Iy
=== SCONS 14

Compiling Multiple Programs

Because the keywords explicitly identify what each argument is, the order does not matter and you can reverse it if
you prefer:

src_files = Split('min.c filel.c file2.c")
Program(source=src_files, target="program)

Whether or not you choose to use keyword arguments to identify the target and source files, and the order in which
you specify them when using keywords, are purely personal choices; SCons functions the same regardless.

3.7. Compiling Multiple Programs

In order to compile multiple programs within the same SConst r uct file, simply cal the Pr ogr ammethod multiple
times, once for each program you need to build:

Program(' foo.c')
Program('bar', ["barl.c', 'bar2.c'])

SCons would then build the programs as follows:

% scons -Q

cc -0 barl.o0 -c barl.c
cc -0 bar2.0 -c bar2.c
cc -0 bar barl.o0 bar2.o0
cc -o foo.o -c foo.c

cc -o foo foo.o

Notice that SCons does not necessarily build the programs in the same order in which you specify them in the
SConst r uct file. SCons does, however, recognize that the individual object files must be built before the resulting
program can be built. (Thiswill be covered in greater detail in Chapter 6, Dependencies, below.)

3.8. Sharing Source Files Between Multiple
Programs

It's common to re-use code by sharing source files between multiple programs. Oneway to do thisisto create alibrary
from the common source files, which can then be linked into resulting programs. (Creating libraries is discussed in
Chapter 4, Building and Linking with Libraries, below.)

A more straightforward, but perhaps less convenient, way to share source files between multiple programsis simply
to include the common filesin the lists of source files for each program:

Program(Split('foo.c conmpbnl.c common2.c'))
Program('bar', Split('barl.c bar2.c comobnl.c comopn2.c'))

SCons recognizes that the object files for the commonl. ¢ and cormon2. ¢ source files each need to be built only
once, even though the resulting object files are each linked in to both of the resulting executable programs:

% scons -Q

Iy
=== SCONS 15

Sharing Source Files Between Multiple Programs

cc -0 barl.o0 -c barl.c

cc -0 bar2.0 -c bar2.c

cc -0 commpnl.o -c¢ commonl. c

CC -0 comDNn2.0 -C conmobn2.c

cc -0 bar barl.o0 bar2.o0 conmpnl.o comDn2. 0
cc -o foo.o -c foo.c

cc -o foo foo.o compnl. o conmon2. o

If two or more programs share alot of common source files, repeating the common filesin the list for each program
can be a maintenance problem when you need to change the list of common files. Y ou can simplify this by creating a
separate Python list to hold the common file names, and concatenating it with other lists using the Python + operator:

comon = ['comonl.c', 'common2.c']
foo files = ['foo.c'] + conmon
bar files = ['"barl.c', 'bar2.c'] + common

Program('foo', foo files)
Progran(' bar', bar_files)

Thisisfunctionally equivalent to the previous example.

Iy
=== SCONS 16

4 Building and Linking with
Libraries

It's often useful to organize large software projects by collecting parts of the software into one or morelibraries. SCons
makes it easy to create libraries and to use them in the programs.

4.1. Building Libraries

Y ou build your own libraries by specifying Li br ar y instead of Pr ogr am
Library('foo', ['fl.c', '"f2.¢c', '"f3.c'])

SConsusesthe appropriatelibrary prefix and suffix for your system. So on POSIX or Linux systems, the above example
would build as follows (although ranlib may not be called on al systems):

% scons -Q

cc -ofl.o-c fl.c

cc -o f2.0 -c f2.c

cc -o f3.0 -c f3.c

ar rc libfoo.a fl1l.0 f2.0 f3.0
ranlib |ibfoo.a

On aWindows system, a build of the above example would look like:

C.\>scons -Q

cl /Fofl.0bj /c f1.c /nologo

cl /Fof2.0bj /c f2.c /nol ogo

cl /Fof3.0bj /c f3.c /nologo

lib /nologo /QUT:foo.lib f1.0bj f2.o0obj f3.obj

The rules for the target name of the library are similar to those for programs: if you don't explicitly specify a target
library name, SConswill deduce onefrom the name of thefirst sourcefile specified, and SConswill add an appropriate
file prefix and suffix if you leave them off.

Building Libraries From Source Code or Object Files

4.1.1. Building Libraries From Source Code or Object
Files

The previous example shows building alibrary from alist of source files. Y ou can, however, aso givethelLi br ary
call object files, and it will correctly realize they are object files. In fact, you can arbitrarily mix source code files and
object filesin the source list:

Library('foo', ['fl.c', '"f2.0', '"f3.¢c', 'f4.0'])

And SCons realizes that only the source code files must be compiled into object files before creating the final library:

% scons -Q

cc -o fl.o -c fl.c

cc -o f3.0 -c f3.c

ar rc libfoo.a fl1.0 f2.0 f3.0 f4.0
ranlib |ibfoo.a

Of course, in this example, the object files must already exist for the build to succeed. See Chapter 5, Node Objects,
below, for information about how you can build object files explicitly and include the built filesin alibrary.

4.1.2. Building Static Libraries Explicitly: the
StaticLi brary Builder

The Li br ary function builds a traditional static library. If you want to be explicit about the type of library being
built, you can use the synonym St at i cLi br ary functioninstead of Li brary:

StaticLibrary('foo', ['fl.c', 'f2.¢c', 'f3.¢c'])

Thereisno functional difference betweenthe St at i cLi brary and Li br ary functions.

4.1.3. Building Shared (DLL) Libraries: the
Shar edLi br ary Builder

If you want to build a shared library (on POSIX systems) or a DLL file (on Windows systems), you use the
Shar edLi br ary function:

Shar edLi brary(' foo', ['fl.c', 'f2.¢', 'f3.¢c'])

The output on POSIX:

% scons -Q

cc -o fl.os -c fl.c

cc -o f2.0s -c f2.¢c

cc -o f3.0s -c f3.c

cc -0 libfoo.so -shared f1.0s f2.0s f3.o0s

And the output on Windows:

Iy
=== SCONS 18

Linking with Libraries

C.\>scons -Q

cl /Fofl.0bj /c f1.c /nologo

cl /Fof2.0bj /c f2.c /nol ogo

cl /Fof3.0bj /c f3.c /nol ogo

link /nologo /dll /out:foo.dll /inplib:foo.lib f1.0bj f2.0bj f3.obj
RegSer ver Func(target, source, env)

enmbedMani f est D | Check(target, source, env)

Notice again that SCons takes care of building the output file correctly, adding the - shar ed option for a POSIX
compilation, and the/ dl | option on Windows.

4.2. Linking with Libraries

Usually, you build alibrary because you want to link it with one or more programs. Y ou link libraries with a program
by specifying the libraries in the $L1 BS construction variable, and by specifying the directory in which the library
will be found inthe $LI BPATH construction variable:

Library('foo', ['fl.c', '"f2.¢c', '"f3.¢c'])
Program(' prog.c', LIBS=['foo', 'bar'], LIBPATH=".")

Notice, of course, that you don't need to specify alibrary prefix (likel i b) or suffix (like. a or. |i b). SCons uses
the correct prefix or suffix for the current system.

On aPOSIX or Linux system, abuild of the above example would look like:

% scons -Q

cc -ofl.o-c fl.c

cc -o f2.0 -c f2.c

cc -o f3.0 -c f3.c

ar rc libfoo.a fl1.0 f2.0 f3.0
ranlib |ibfoo.a

CC -0 prog.o -c prog.c

CC -0 prog prog.o -L. -Ifoo -Ibar

On aWindows system, a build of the above example would look like:

C.\>scons -Q

cl /Fofl.obj /c f1l.c /nol ogo

cl /Fof2.0bj /c f2.c /nol ogo

cl /Fof3.0bj /c f3.c /nol ogo

lib /nologo /QUT:foo.lib f1.0bj f2.0bj f3.o0bj

cl /Foprog.obj /c prog.c /nol ogo

link /nologo /QUT: prog. exe /LIBPATH:. foo.lib bar.lib prog. obj
enbedMani f est ExeCheck(target, source, env)

Asusual, notice that SCons has taken care of constructing the correct command linesto link with the specified library
on each system.

Note also that, if you only have asingle library to link with, you can specify the library namein single string, instead
of aPython list, so that:

Program(' prog.c', LIBS=' foo', LIBPATH=".")

Iy
=== SCONS 19

Finding Libraries: the $LI BPATH Construction Variable

is equivaent to:
Program(' prog.c', LIBS=['foo0'], LIBPATH=".")

Thisissimilar to the way that SCons handles either a string or alist to specify a single source file.

4.3. Finding Libraries: the $LI1 BPATH
Construction Variable

By default, the linker will only look in certain system-defined directories for libraries. SCons knows how to look for
libraries in directories that you specify with the $LI BPATH construction variable. $L1 BPATH consists of a list of
directory names, like so:

Program(' prog.c', LIBS = "'m,
LI BPATH = ['/usr/lib', '/usr/local/lib'])

Using a Python list is preferred because it's portable across systems. Alternatively, you could put all of the directory
names in asingle string, separated by the system-specific path separator character: acolon on POSIX systems:

LI BPATH = ' /usr/lib:/usr/local/lib'
or a semi-colon on Windows systems:
LI BPATH = 'C:\\lib; D:\\Ii b’

(Note that Python requires that the backslash separators in a Windows path name be escaped within strings.)

When the linker is executed, SCons will create appropriate flags so that the linker will look for libraries in the same
directories as SCons. So on aPOSIX or Linux system, abuild of the above example would look like:

% scons -Q
CC -0 prog.o -c prog.c
CC -0 prog prog.o -L/usr/lib -L/usr/local/lib -Im

On aWindows system, a build of the above example would look like:
C.\>scons -Q
cl /Foprog.obj /c prog.c /nol ogo

link /nologo /QUT: prog. exe /LI BPATH: \usr\lib /LIBPATH: \usr\local\lib mlib prog.obj
enbedMani f est ExeCheck(target, source, env)

Note again that SCons has taken care of the system-specific details of creating the right command-line options.

Iy
=== SCONS 20

5 Node Objects

Internally, SConsrepresents all of the files and directories it knows about as Nodes. These internal objects (not object
files) can be used in avariety of waysto make your SConscr i pt files portable and easy to read.

5.1. Builder Methods Return Lists of Target
Nodes

All builder methods return alist of Node objects that identify the target file or files that will be built. These returned
Nodes can be passed as arguments to other builder methods.

For example, suppose that we want to build the two object files that make up a program with different options. This
would mean calling the Obj ect builder once for each object file, specifying the desired options:

Obj ect (" hello.c', CCFLAGS='-DHELLO)
nj ect (' goodbye. c', CCFLAGS=' - DGOODBYE')

One way to combine these object files into the resulting program would be to cal the Pr ogr ambuilder with the
names of the object files listed as sources:

Obj ect (" hello.c', CCFLAGS='-DHELLO)
oj ect (' goodbye. ¢c', CCFLAGS=' - DGOODBYE')
Program([' hel l 0. 0', 'goodbye.o'])

The problem with specifying the names as stringsisthat our SConst r uct fileisno longer portable across operating
systems. It won't, for example, work on Windows because the object files there would be named hel | 0. obj and
goodbye. obj , not hel | 0. 0 and goodbye. o.

A better solution is to assign the lists of targets returned by the calls to the Obj ect builder to variables, which we
can then concatenate in our call to the Pr ogr ambuilder:

hello_ list = Object(' hello.c', CCFLAGS='-DHELLO)
goodbye |ist = Object (' goodbye.c', CCFLAGS='- DGOODBYE')
Program(hell o_list + goodbye |ist)

Explicitly Creating File and Directory Nodes

Thismakes our SConst r uct file portable again, the build output on Linux looking like:

% scons -Q

cc -0 goodbye.o -c - DGOODBYE goodbye. c
cc -0 hello.o -c -DHELLO hello.c

cc -0 hello hello.o goodbye. o

And on Windows:

C.\>scons -Q

cl / Fogoodbye. obj /c goodbye.c - DGOODBYE

cl /Fohello.obj /c hello.c -DHELLO

link /nologo /QUT: hel | 0. exe hel | 0. obj goodbye. obj
enmbedMani f est ExeCheck(target, source, env)

WEe'll see examples of using the list of nodes returned by builder methods throughout the rest of this guide.

5.2. Explicitly Creating File and Directory
Nodes

It's worth mentioning here that SCons maintains a clear distinction between Nodes that represent files and Nodes that
represent directories. SCons supportsFi | e and Di r functions that, respectively, return afile or directory Node:

hello c = File('hello.c")
Program(hel | o_c)

classes = Dir('classes')
Java(cl asses, 'src')

Normally, you don't need to call Fi | e or Di r directly, because calling a builder method automatically trests strings
as the names of files or directories, and translates them into the Node objects for you. The Fi | e and Di r functions
can come in handy in situations where you need to explicitly instruct SCons about the type of Node being passed to a
builder or other function, or unambiguously refer to a specific file in adirectory tree.

There are also times when you may need to refer to an entry in a file system without knowing in advance whether
it'safile or adirectory. For those situations, SCons also supports an Ent r y function, which returns a Node that can
represent either afile or adirectory.

xyzzy = Entry('xyzzy')

Thereturned xyzzy Node will be turned into afile or directory Node the first timeit is used by a builder method or
other function that requires one vs. the other.

5.3. Printing Node File Names

One of the most common things you can do with aNode is useit to print the file name that the node represents. Keep
in mind, though, that because the object returned by a builder call isalist of Nodes, you must use Python subscripts
to fetch individual Nodes from the list. For example, the following SConst r uct file:

Iy
=== SCONS 22

Using aNode's File Name as a String

object list = Cbject('hello.c")

program|ist = Progran(object list)

print("The object file is: %" %bject |ist[0])
print("The programfile is: %" %rogramlist[0])

Would print the following file names on a POSIX system:

% scons -Q

The object file is: hello.o
The programfile is: hello
cc -0 hello.o -c hello.c

cc -0 hello hello.o

And the following file names on a Windows system:

C.\>scons -Q

The object file is: hello.obj

The programfile is: hello.exe

cl /Fohello.obj /c hello.c /nol ogo

link /nol ogo /QUT: hel | 0. exe hel | 0. obj
enbedMani f est ExeCheck(target, source, env)

Note that in the above example, the obj ect _|i st [0] extractsan actual Node object from the list, and the Python
pri nt function converts the object to a string for printing.

5.4. Using a Node's File Name as a String

Printing aNode's name as described in the previous section works because the string representation of aNode object
is the name of thefile. If you want to do something other than print the name of the file, you can fetch it by using the
builtin Python st r function. For example, if you want to use the Python o0s. pat h. exi st s to figure out whether
afile exists whilethe SConst r uct fileisbeing read and executed, you can fetch the string as follows:

i mport os.path
programlist = Progran(' hello.c')
program nane = str(programlist[0])
i f not os.path. exists(program nane):
print ("% does not exist!"%rogram nane)

Which executes as follows on a POSIX system:

% scons -Q

hell o does not exi st!

cc -o hello.o -c hello.c
cc -o hello hello.o

5.5. Get Bui | dPat h: Getting the Path From a
Node or String

env. Get Bui | dPat h(file_or _Iist) returnsthe path of aNode or astring representing apath. It can also take
alist of Nodes and/or strings, and returns the list of paths. If passed asingle Node, the result is the same as calling

Iy
=== SCONS 23

Get Bui | dPat h: Getting the Path From aNode or
String

st r (node) (seeabove). Thestring(s) can have embedded construction variables, which are expanded asusual, using
the calling environment's set of variables. The paths can be files or directories, and do not have to exist.

env=Envi r onment (VAR="val ue")
n=Fil e("foo.c")
print (env. Get Bui | dPat h([n, "sub/dir/$VAR']))

Would print the following file names:

% scons -Q
['foo.c', 'sub/dir/value']
scons: ~.' is up to date.

Thereis also afunction version of Get Bui | dPat h which can be called without an Envi r onnent ; that uses the
default SCons Envi r onment to do substitution on any string arguments.

Iy
=== SCONS 24

6 Dependencies

So far we've seen how SCons handles one-time builds. But one of the main functions of a build tool like SConsisto
rebuild only what is necessary when source files change--or, put another way, SCons should not waste time rebuilding
things that don't need to be rebuilt. You can see this at work simply by re-invoking SCons after building our smple
hel | o example:

% scons -Q

cc -0 hello.o -c hello.c
cc -0 hello hello.o

% scons -Q

scons: ~.' is up to date

The second time it is executed, SCons realizes that the hel | o program is up-to-date with respect to the current
hel | o. ¢ sourcefile, and avoidsrebuildingit. Y ou can seethismore clearly by namingthehel | o program explicitly
on the command line:

% scons -Q hello

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

Note that SConsreports™. ..is up to date" only for target files named explicitly on the command line, to
avoid cluttering the output.

6.1. Deciding When an Input File Has Changed:
the Deci der Function

Another aspect of avoiding unnecessary rebuildsis the fundamental build tool behavior of rebuilding things when an
input file changes, so that the built software is up to date. By default, SCons keeps track of this through a content
signature, or hash, of the contents of each file, although you can easily configure SCons to use the modification times
(or time stamps) instead. Y ou can even write your own Python function for deciding if an input file should trigger
arebuild.

Using Content Signaturesto Decide if a File Has Changed

6.1.1. Using Content Signatures to Decide if a File Has
Changed

By default, SCons uses a cryptographic hash of the file's contents, not the file's modification time, to decide whether
afile has changed. This means that you may be surprised by the default SCons behavior if you are used to the Make
convention of forcing arebuild by updating the file's modification time (using the touch command, for example):

% scons -Q hello

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% touch hello.c

% scons -Q hello

scons: " hello' is up to date

Even though the file's modification time has changed, SCons realizes that the contents of the hel | o. ¢ file have
not changed, and therefore that the hel | o program need not be rebuilt. This avoids unnecessary rebuilds when, for
example, someone rewrites the contents of a file without making a change. But if the contents of the file really do
change, then SCons detects the change and rebuilds the program as required:

% scons -Q hello

cc -o hello.o -c hello.c

cc -o hello hello.o

% [CHANGE THE CONTENTS OF hel | o. c]
% scons -Q hello

cc -o hello.o -c hello.c

cc -o hello hello.o

Note that you can, if you wish, specify the default behavior of using content signatures explicitly, using the Deci der
function asfollows:

Progran(' hello.c")
Deci der (' content')

You can aso usethe string ' MD5' asasynonym for' cont ent' when caling the Deci der function - this older
name is deprecated since SCons now supports a choice of hash functions, not just the MD5 function.

6.1.1.1. Ramifications of Using Content Signatures

Using content signatures to decide if an input file has changed has one surprising benefit: if a source file has been
changed in such a way that the contents of the rebuilt target file(s) will be exactly the same as the last time the file
was built, then any "downstream” target files that depend on the rebuilt-but-not-changed target file actually need not
be rebuilt.

So if, for example, a user were to only change acomment in ahel | o. c file, then the rebuilt hel | o. o file would
be exactly the same as the one previously built (assuming the compiler doesn't put any build-specific information in
the object file). SCons would then realize that it would not need to rebuild the hel | o program asfollows:

% scons -Q hello

cc -o hello.o -c hello.c

cc -o hello hello.o

% [CHANGE A COWENT I N hel |l o. c]
% scons -Q hello

cc -o hello.o -c hello.c

Iy
=== SCONS 26

Using Time Stampsto Decide If a File Has Changed

scons: " hello' is up to date.

In essence, SCons "short-circuits' any dependent builds when it realizes that a target file has been rebuilt to exactly
the samefile asthe last build. This does take some extra processing time to read the contents of thetarget (hel | 0. 0)
file, but often saves time when the rebuild that was avoided would have been time-consuming and expensive.

6.1.2. Using Time Stamps to Decide If a File Has
Changed

If you prefer, you can configure SCons to use the modification time of afile, not the file contents, when deciding if a
target needs to be rebuilt. SCons gives you two ways to use time stamps to decide if an input file has changed since
the last time atarget has been built.

Themost familiar way to usetime stampsistheway Make does: that is, have SCons decide that atarget must be rebuilt
if a source file's modification time is newer than the target file. To do this, call the Deci der function asfollows:

oject (' hello.c")
Deci der (' ti nest anp- newer ')

This makes SCons act like Make when afile's modification timeis updated (using the touch command, for example):

% scons -Q hello.o

cc -0 hello.o -c hello.c
% touch hello.c

% scons -Q hello.o

cc -0 hello.o -c hello.c

And, in fact, because this behavior is the same as the behavior of Make, you can also use the string ' make' asa
synonym for' ti mest anp- newer' when caling the Deci der function:

oject (' hello.c")
Deci der (' make')

One drawback to using times stamps exactly like Make is that if an input file's modification time suddenly becomes
older than a target file, the target file will not be rebuilt. This can happen if an old copy of a source file is restored
from a backup archive, for example. The contents of the restored file will likely be different than they were the last
time a dependent target was built, but the target won't be rebuilt because the modification time of the source file is
not newer than the target.

Because SCons actually storesinformation about the source files' time stamps whenever atarget is built, it can handle
this situation by checking for an exact match of the sourcefile time stamp, instead of just whether or not the sourcefile
is newer than the target file. To do this, specify the argument ' t i mest anp- mat ch' when calling the Deci der
function:

oject (' hello.c")
Deci der (' ti mestanp-mat ch')

When configured this way, SCons will rebuild atarget whenever a source file's modification time has changed. So if
weusethet ouch -t option to change the modification time of hel | 0. ¢ to an old date (January 1, 1989), SCons
will still rebuild the target file:

Iy
=== SCONS 27

Deciding If aFile Has Changed Using Both MD
Signatures and Time Stamps

% scons -Q hello.o

cc -o hello.o -c hello.c

% touch -t 198901010000 hell o.c
% scons -Q hello.o

cc -o hello.o -c hello.c

In general, the only reason to prefer t i mest anp- newer instead of t i nest anp- nat ch, would be if you have
some specific reason to require this Make-like behavior of not rebuilding atarget when an otherwise-modified source
fileisolder.

6.1.3. Deciding If a File Has Changed Using Both MD
Sighatures and Time Stamps

As a performance enhancement, SCons provides a way to use a file's content signature, but to read those contents
only when thefil€'s timestamp has changed. To do this, call the Deci der functionwith' cont ent - ti mest anp'
argument as follows:

Program(' hello.c")
Deci der (' content-ti nmestanp')

So configured, SCons will still behave like it does when using Deci der (' content'):

% scons -Q hello
cc -0 hello.o -c hello.c
cc -0 hello hello.o
% touch hello.c
% scons -Q hello
scons: " hello' is up to date
%edit hello.c
[CHANGE THE CONTENTS OF hel | o. c]
% scons -Q hello
cc -0 hello.o -c hello.c
cc -0 hello hello.o

However, the second call to SCons in the above output, when the build is up-to-date, will have been performed by
simply looking at the modification time of the hel | 0. ¢ file, not by opening it and performing a signature calcuation
on its contents. This can significantly speed up many up-to-date builds.

The only drawback to using Deci der (' content-ti mestanp') isthat SCons will not rebuild a target file
if a source file was modified within one second of the last time SCons built the file. While most developers are
programming, thisisn't aproblem in practice, sinceit's unlikely that someone will have built and then thought quickly
enough to make a substantive change to a source file within one second. Certain build scripts or continuous integration
tools may, however, rely on the ability to apply changes to files automatically and then rebuild as quickly as possible,
inwhich case use of Deci der (' content-ti mestanp') may not be appropriate.

6.1.4. Extending SCons: Writing Your Own Custom
Deci der Function

The different string values that we've passed to the Deci der function are essentially used by SCons to pick one of
several specific internal functions that implement various ways of deciding if a dependency (usualy a source file)

Iy
=== SCONS 28

Extending SCons. Writing Y our Own Custom Deci der
Function

has changed since a target file has been built. As it turns out, you can also supply your own function to decide if a
dependency has changed.

For example, suppose we have an input file that contains a lot of data, in some specific regular format, that is used
to rebuild alot of different target files, but each target file really only depends on one particular section of the input
file. We'd like to have each target file depend on only its section of the input file. However, since the input file may
contain alot of data, we want to open theinput file only if itstimestamp has changed. This could be donewith acustom
Deci der function that might look something like this:

Progran(' hello.c")
def decide_if_changed(dependency, target, prev_ni, repo_node=None):
i f dependency.get tinmestanp() != prev_ni.tinmestanp:
dep = str(dependency)
tgt = str(target)
if specific_part_of file_has_changed(dep, tgt):
return True
return Fal se
Deci der (deci de_i f _changed)

Note that in the function definition, the dependency (input file) is the first argument, and then the t ar get . Both
of these are passed to the functions as SCons Node objects, which we convert to strings using the Pythonst r () .

The third argument, pr ev_ni , is an object that holds the content signature and/or timestamp information that was
recorded about the dependency the last time the target was built. A pr ev_ni object can hold different information,
depending on the type of thing that the dependency argument represents. For normal files, the pr ev_ni object
has the following attributes:

csig
The content signature: a cryptgraphic hash, or checksum, of the file contents of the dependency file the last
timethet ar get wasbuilt.

si ze
The sizein bytes of thedependency file the last time the target was built.

ti mestanp
The modification time of the dependency filethelast timethet ar get was built.

These attributes may not be present at the time of the first run. Without any prior build, no targets have been created
and no . sconsi gn DB file exists yet. So you should always check whether the pr ev_ni attribute in question is
available (use the Python hasat t r method or at r y-except block).

Thefourthargumentr epo_node isthe Node touseif itisnot Nonewhen comparing Bui | dI nf 0. Thisistypically
only set when the target node only existsinaReposi t ory

Note that ignoring some of the argumentsin your custom Deci der function isa perfectly normal thing to do, if they
don't impact the way you want to decide if the dependency file has changed.

We finally present a small example for acsi g-based decider function. Note how the signature information for the
dependency filehasto get initialized viaget _csi g during each function call (thisis mandatory!).

env = Environment ()

Iy
=== SCONS 29

Mixing Different Ways of Deciding If aFile Has
Changed

def config file_decider(dependency, target, prev_ni, repo_node=None):
i mport os.path

W always have to init the .csig val ue..
dep_csi g = dependency. get _csi g()
.csig may not exist, because no target was built yet..
if not prev_ni.hasattr("csig"):
return True
Target file may not exist yet
if not os.path.exists(str(target.abspath)):
return True
if dep_csig !'= prev_ni.csig:
Some change on source file => update installed one
return True
return Fal se

def update file():
with open("test.txt", "a") as f:
f.wite("sone |[ine\n")

update file()

Activate our own decider function
env. Deci der (config file_decider)

env.Install ("install", "test.txt")

6.1.5. Mixing Different Ways of Deciding If a File Has
Changed

The previous examples have all demonstrated calling the global Deci der function to configure al dependency
decisions that SCons makes. Sometimes, however, you want to be able to configure different decision-making for
different targets. When that's necessary, you can use the env. Deci der method to affect only the configuration
decisions for targets built with a specific construction environment.

For example, if we arbitrarily want to build one program using content signatures and another using file modification
times from the same source we might configure it this way:

envl Envi ronnment (CPPPATH = ['."'])

env2 envl. Cl one()

env2. Deci der (' ti mest anp-match')

envl. Progran{(' prog-content', 'programl.c')
env2. Progran{' prog-ti mestanp', 'progranR.c')

If both of the programsinclude the samei nc. h file, then updating the modification time of i nc. h (using the touch
command) will cause only pr og-ti mest anp to be rebuilt:

% scons -Q
cc -0 progranil.o -c -1. progranil.c

Iy
=== SCONS 30

Implicit Dependencies: The $CPPPATH Construction
Variable

CC -0 prog-content programl.o

cc -0 progranR.o -c -1. progran®.c
CC -0 prog-timestanp progran?.o

% touch inc.h

% scons -Q

cc -0 progranR.o -c -1. progran®.c
CC -0 prog-timestanp progran?.o

6.2. Implicit Dependencies: The $CPPPATH
Construction Variable

Now suppose that our "Hello, World!" program actually has an #i ncl ude lineto include the hel | o. h filein the
compilation:

#i ncl ude <hel |l 0. h>

i nt
mai n()
{
printf("Hello, %!\n", string);
}

And, for completeness, the hel | o. h filelooks like this:

#define string “wor | d"

In this case, we want SCons to recognize that, if the contents of the hel | 0. h file change, the hel | o program must
be recompiled. To do this, we need to modify the SConst r uct filelike so:

Program(' hello.c', CPPPATH=".")

The $CPPPATH value tells SCons to look in the current directory (' . ') for any filesincluded by C source files (. ¢
or . h files). With this assignment in the SConst r uct file:

% scons -Q hello

cc -0 hello.o -c -I. hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

% [CHANGE THE CONTENTS OF hel | 0. h]
% scons -Q hello

cc -0 hello.o -c -I. hello.c

cc -0 hello hello.o

First, noticethat SConsconstructedthe- | . argumentfromthe' . ' inthe SCPPPATH variable so that the compilation
would find the hel | 0. h filein the local directory.

Second, realize that SCons knows that the hel | o program must be rebuilt because it scans the contents of the
hel | o. c filefor the#i ncl ude linesthat indicate another file is being included in the compilation. SCons records

Iy
=== SCONS 31

Caching Implicit Dependencies

these as implicit dependencies of the target file, Consequently, when the hel | 0. h file changes, SCons realizes that
the hel | o. ¢ file includes it, and rebuilds the resulting hel | o program that depends on both the hel | 0. ¢ and
hel | 0. hfiles.

Likethe$LI BPATHvariable, the $CPPPATH variable may bealist of directories, or astring separated by the system-
specific path separation character (":' on POSIX/Linux, ';' on Windows). Either way, SCons creates the right command-
line options so that the following example:

Program(' hello.c', CPPPATH = ['include', '/home/project/inc'])

Will look like this on POSIX or Linux:

% scons -Q hello
cc -0 hello.o -c -linclude -1/hone/project/inc hello.c
cc -0 hello hello.o

And like this on Windows:

C.\>scons -Q hell o. exe

cl /Fohello.obj /c hello.c /nologo /1include /I\home\project\inc
link /nol ogo /QUT: hel | 0. exe hel | 0. obj

enbedMani f est ExeCheck(target, source, env)

6.3. Caching Implicit Dependencies

Scanning each file for #i ncl ude lines does take some extra processing time. When you're doing a full build of a
large system, the scanning time is usually avery small percentage of the overall time spent on the build. Y ou're most
likely to notice the scanning time, however, when you rebuild all or part of alarge system: SConswill likely take some
extratime to "think about" what must be built before it issues the first build command (or decides that everything is
up to date and nothing must be rebuilt).

In practice, having SCons scan files saves time relative to the amount of potential time lost to tracking down subtle
problems introduced by incorrect dependencies. Nevertheless, the "waiting time" while SCons scans files can annoy
individual developerswaiting for their builds to finish. Consequently, SCons letsyou cache the implicit dependencies
that its scanners find, for use by later builds. You can do this by specifying the - - i npl i ci t - cache option on
the command line:

% scons -Q --inplicit-cache hello
cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

If you don't want to specify - -i npl i ci t - cache on the command line each time, you can make it the default
behavior for your build by setting thei npl i cit _cache optioninan SConscri pt file:

Set Option('inplicit_cache', 1)

SCons does not cache implicit dependencies like this by default because the - -i npl i ci t - cache causes SCons
to simply use the implicit dependencies stored during the last run, without any checking for whether or not
those dependencies are still correct. Specificaly, thismeans--i npl i ci t - cache instructs SCons to not rebuild
"correctly" in the following cases:

Iy
=== SCONS 32

The--inplicit-deps-changed Option

e When--inplicit-cache isused, SCons will ignore any changes that may have been made to search paths
(like $CPPPATH or $LI BPATH,). This can lead to SCons not rebuilding afile if a change to $CPPPATH would
normally cause a different, same-named file from a different directory to be used.

* When--inplicit-cacheisused, SConswill not detect if asame-named file has been added to adirectory that
is earlier in the search path than the directory in which the file was found last time.

6.3.1. The--inplicit-deps-changed Option

When using cached implicit dependencies, sometimes you want to "start fresh" and have SCons re-scan the files for
which it previously cached the dependencies. For example, if you have recently installed a new version of external
code that you use for compilation, the external header files will have changed and the previously-cached implicit
dependencies will be out of date. Y ou can update them by running SConswiththe- - i npl i ci t - deps- changed
option:

% scons -Q --inplicit-deps-changed hell o
cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

In this case, SCons will re-scan all of the implicit dependencies and cache updated copies of the information.

6.3.2. The--inplicit-deps-unchanged Option

By default when caching dependencies, SCons notices when a file has been modified and re-scans the file for any
updated implicit dependency information. Sometimes, however, you may want to force SCons to use the cached
implicit dependencies, even if the sourcefiles changed. This can speed up abuild for example, when you have changed
your sourcefilesbut know that you haven't changed any #i ncl ude lines. Inthiscase, youcanusethe--i nplicit -
deps- unchanged option:

% scons -Q --inplicit-deps-unchanged hello
cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

Inthiscase, SConswill assumethat the cached implicit dependencies are correct and will not bother to re-scan changed
files. For typical builds after small, incremental changesto sourcefiles, the savings may not be very big, but sometimes
every bit of improved performance counts.

6.4. Explicit Dependencies: the Depends
Function

Sometimes a file depends on another file that is not detected by an SCons scanner. For this situation, SCons allows
you to specific explicitly that one file depends on another file, and must be rebuilt whenever that file changes. This
is specified using the Depends method:

hell o = Progran(' hello.c')
Depends(hell o, 'other file")

Iy
=== SCONS 33

Dependencies From External Files: the Par seDepends
Function

% scons -Q hello
cc -c hello.c -0 hello.o
cc -0 hello hello.o
% scons -Q hello
scons: " hello' is up to date
% edit other file
[CHANGE THE CONTENTS OF ot her fil e]
% scons -Q hello
cc -c hello.c -0 hello.o
cc -0 hello hello.o

Note that the dependency (the second argument to Depends) may also be a list of Node objects (for example, as
returned by acall to a Builder):

hell o = Program(' hello.c")
goodbye = Progran(' goodbye. c')
Depends(hel | o, goodbye)

in which case the dependency or dependencies will be built before the target(s):

% scons -Q hello

cc -c goodbye.c -o goodbye. o
cc -0 goodbye goodbye. o

cc -c hello.c -o hello.o

cc -0 hello hello.o

6.5. Dependencies From External Files: the
Par seDepends Function

SCons has built-in scanners for a number of languages. Sometimes these scanners fail to extract certain implicit
dependencies due to limitations of the scanner implementation.

The following example illustrates a case where the built-in C scanner is unable to extract the implicit dependency
on a header file.

#defi ne FOO HEADER <f 00. h>
#i ncl ude FOO_HEADER

int main() {
return FOO
}

% scons -Q

cc -0 hello.o -¢c -1. hello.c
cc -o hello hello.o

% [CHANGE CONTENTS OF f 00. h]
% scons -Q

Iy
=== SCONS 34

Ignoring Dependencies. the | gnor e Function

scons: ~.' is up to date.

Apparently, the scanner does not know about the header dependency. Not being a full-fledged C preprocessor, the
scanner does not expand the macro.

In these cases, you may also use the compiler to extract the implicit dependencies. Par seDepends can parse the
contents of the compiler output in the style of Make, and explicitly establish all of the listed dependencies.

Thefollowing example uses Par seDepends to process acompiler generated dependency file which is generated as
aside effect during compilation of the object file:

obj = Cbject('hello.c', CCFLAGS='-MD -Mr hello.d , CPPPATH='.')
Si deEffect (' hell o.d', obj)

Par seDepends(' hel l 0.d")

Program(' hell o', obj)

% scons -Q

cc -0 hello.o -c -MD -M- hello.d -1. hello.c
cc -0 hello hello.o

% [CHANGE CONTENTS OF fo0. h]

% scons -Q

cc -0 hello.o -c -MD -M- hello.d -1. hello.c

Parsing dependencies from a compiler-generated . d file has a chicken-and-egg problem, that causes unnecessary
rebuilds:

% scons -Q

cc -0 hello.o -c -MD -MF hello.d -I. hello.c

cc -0 hello hello.o

% scons -Q --debug=expl ai n

scons: rebuilding “hello.o because foo.h' is a new dependency

cc -0 hello.o -c -MD -MF hello.d -1. hello.c
% scons -Q
scons: ~.' is up to date.

In thefirst pass, the dependency file is generated while the object fileis compiled. At that time, SCons does not know
about the dependency on f 00. h. In the second pass, the object file is regenerated because f 00. h is detected as a
new dependency.

Par seDepends immediately reads the specified file at invocation time and just returns if the file does not exist. A
dependency file generated during the build process is not automatically parsed again. Hence, the compiler-extracted
dependencies are not stored in the signature database during the same build pass. This limitation of Par seDepends
leads to unnecessary recompilations. Therefore, Par seDepends should only be used if scanners are not available
for the employed language or not powerful enough for the specific task.

6.6. Ignoring Dependencies: the | gnor e
Function

Sometimes it makes sense to not rebuild a program, even if a dependency file changes. In this case, you would tell
SCons specifically to ignore a dependency using the | gnor e function as follows:

Iy
=== SCONS 35

Order-Only Dependencies: the Requi r es Function

hel | o_obj =Cbj ect (' hello.c")
hell o = Program hell o_obj)
I gnore(hello_obj, '"hello.h")

% scons -Q hello
cc -c -0 hello.o hello.c
cc -0 hello hello.o
% scons -Q hello
scons: " hello' is up to date.
%edit hello.h
[CHANGE THE CONTENTS OF hel | 0. h]
% scons -Q hello
scons: " hello' is up to date.

Now, the above example is alittle contrived, because it's hard to imagine a real-world situation where you wouldn't
want to rebuild hel | o if the hel | 0. h file changed. A more redlistic example might be if the hel | o program is
being built in adirectory that is shared between multiple systems that have different copies of the st di 0. h include
file. In that case, SCons would notice the differences between the different systems' copies of st di 0. h and would
rebuild hel | o each time you change systems. Y ou could avoid these rebuilds as follows:

hell o = Progran(' hello.c', CPPPATH=['/usr/include'])
| gnore(hello, '/usr/include/stdio.h")

| gnor e can aso be used to prevent a generated file from being built by default. Thisis dueto the fact that directories
depend on their contents. So to ignore a generated file from the default build, you specify that the directory should
ignorethe generated file. Notethat thefilewill still bebuilt if the user specifically requeststhetarget on sconscommand
ling, or if thefile is a dependency of another file which is requested and/or is built by default.

hel | o_obj =Cbj ect (' hell o.c")
hell o = Program(hell o_obj)
I gnore('.",[hello, hello_obj])

% scons -Q

scons: ~.' is up to date.

% scons -Q hello

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date.

6.7. Order-Only Dependencies: the Requi r es
Function

Occasionaly, it may be useful to specify that a certain file or directory must, if necessary, be built or created before
some other target is built, but that changes to that file or directory do not require that the target itself be rebuilt. Such

Iy
=== SCONS 36

Order-Only Dependencies: the Requi r es Function

arelationship is called an order-only dependency because it only affects the order in which things must be built--the
dependency before the target--but it is not a strict dependency relationship because the target should not change in
response to changes in the dependent file.

For example, suppose that you want to create a file every time you run a build that identifies the time the build was
performed, the version number, etc., and which isincluded in every program that you build. The version file's contents
will change every build. If you specify a normal dependency relationship, then every program that depends on that
file would be rebuilt every time you ran SCons. For example, we could use some Python codeinaSConst r uct file
to create anew ver si on. c file with a string containing the current date every time we run SCons, and then link a
program with the resulting object file by listing ver si on. ¢ in the sources:

i mport tine

version_c_text =

char *date = "%";
"ttoptinme.ctinme(tinme.tinme())
open('version.c', 'wW).wite(version_c_text)
hell o = Program([' hello.c', 'version.c'])

If welist ver si on. c as an actua source file, though, then the ver si on. o filewill get rebuilt every time we run
SCons (because the SConst r uct fileitself changes the contents of ver si on. ¢) and the hel | o executable will
get re-linked every time (because the ver si on. o file changes):

% scons -Q hello

cc -0 hello.o -c hello.c

CC -0 version.o -c version.c
cc -0 hello hello.o version.o
% sl eep 1

% scons -Q hello

CC -0 version.o -c version.c
cc -0 hello hello.o version.o
% sl eep 1

% scons -Q hello

CC -0 version.o -c version.c
cc -0 hello hello.o version.o

(Notethat for the above example to work, we sleep for one second in between each run, so that the SConst r uct file
will createaver si on. c filewith atime string that's one second later than the previous run.)

One solution isto usethe Requi r es function to specify that thever si on. o must be rebuilt beforeit is used by the
link step, but that changesto ver si on. o should not actually cause the hel | o executable to be re-linked:

i mport time

version_c_text =

char *date = "%";
"ttt time.ctime(time.time())
open('version.c', "W).wite(version_c_text)

versi on_obj = Object('version.c')

Iy
=== SCONS 37

The Al waysBui | d Function

hell o = Progran(' hello.c',
LI NKFLAGS = str(version_obj[0]))

Requi res(hell o, version_obj)

Notice that because we can no longer list ver si on. ¢ asone of the sourcesfor the hel | o program, we haveto find
some other way to get it into the link command line. For this example, we're cheating a bit and stuffing the object
file name (extracted fromver si on_obj list returned by the Qbj ect builder cal) into the $LI NKFLAGS variable,
because $L1 NKFLAGS is aready included in the $L1 NKCOMcommand line.

With these changes, we get the desired behavior of only re-linking the hel | o executable when the hel | 0. ¢ has
changed, even though the ver si on. o is rebuilt (because the SConst ruct file still changes the ver si on. ¢
contents directly each run):

% scons -Q hello

CC -0 version.o -c version.c
cc -0 hello.o -c hello.c

cc -0 hello version.o hello.o
% sl eep 1

% scons -Q hello

CC -0 version.o -c version.c
scons: " hello' is up to date
% sl eep 1

% [CHANGE THE CONTENTS OF hel |l o. c]
% scons -Q hello

CC -0 version.o -c version.c
cc -0 hello.o -c hello.c

cc -0 hello version.o hello.o
% sl eep 1

% scons -Q hello

CC -0 version.o -c version.c
scons: " hello' is up to date

6.8. The Al waysBui | d Function

How SCons handles dependencies can also be affected by the Al waysBui | d method. When afile is passed to the
Al waysBui | d method, like so:

hell o = Progran(' hello.c')
Al waysBui | d(hel | 0)

Then the specified target file (hel | o in our example) will always be considered out-of-date and rebuilt whenever that
target file is evaluated while walking the dependency graph:

% scons -Q

cc -0 hello.o -c hello.c
cc -0 hello hello.o

% scons -Q

cc -0 hello hello.o

The Al waysBui | d function has a somewhat misleading name, because it does not actually mean the target file will
be rebuilt every single time SCons is invoked. Instead, it means that the target will, in fact, be rebuilt whenever the

Iy
=== SCONS 38

The Al waysBui | d Function

target file is encountered while evaluating the targets specified on the command line (and their dependencies). So
specifying some other target on the command line, atarget that does not itself depend on the Al waysBui | d target,
will still be rebuilt only if it's out-of-date with respect to its dependencies:

% scons -Q

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello.o

scons: " hello.o'" is up to date

Iy
=== SCONS 39

7 Environments

An environment is a collection of values that can affect how a program executes. SCons distinguishes between
three different types of environments that can affect the behavior of SCons itself (subject to the configuration in the
SConscri pt files), aswell asthe compilers and other tools it executes:

External Environment
The External Environment isthe set of variablesin the user's environment at the time the user runs SCons. These
variables are not automatically part of an SCons build but are available to be examined if needed. See Section 7.1,
“Using Values From the External Environment”, below.

Construction Environment
A Construction Environment is a distinct object created within a SConscr i pt file and which contains values
that affect how SCons decides what action to use to build a target, and even to define which targets should
be built from which sources. One of the most powerful features of SCons is the ability to create multiple
construction environments, including the ability to clone a new, customized construction environment from an
existing construction environment. See Section 7.2, “Construction Environments”, below.

Execution Environment
An Execution Environment isthe values that SCons sets when executing an external command (such asacompiler
or linker) to build one or more targets. Note that thisis not the same as the external environment (see above). See
Section 7.3, “Controlling the Execution Environment for Issued Commands’, below.

Unlike Make, SCons does not automatically copy or import val ues between different environments (with the exception
of explicit clones of construction environments, which inherit the values from their parent). Thisisadeliberate design
choice to make sure that builds are, by default, repeatable regardless of the values in the user's external environment.
This avoids a whole class of problems with builds where a developer's local build works because a custom variable
setting causes a different compiler or build option to be used, but the checked-in change breaks the official build
because it uses different environment variable settings.

Note that the SConscr i pt writer can easily arrange for variables to be copied or imported between environments,
and this is often very useful (or even downright necessary) to make it easy for developers to customize the build in
appropriate ways. The point is not that copying variables between different environmentsis evil and must aways be
avoided. Instead, it should be up to the implementer of the build system to make conscious choices about how and
when to import avariable from one environment to another, making informed decisions about striking the right balance
between making the build repeatable on the one hand and convenient to use on the other.

Using Values From the External Environment

Sidebar: Python Dictionaries

If you're not familiar with the Python programming language, we need to talk a little bit about the Python
dictionary data type. A dictionary (also known by terms such as mapping, associative array and key-value
store) associates keys with values, such that asking the dict about a key gives you back the associated value
and assigning to a key creates the association - either a new setting if the key was unknown, or replacing the
previous association if the key was already in the dictionary. Vaues can be retrieved using item access (the
key name in square brackets ([])), and dictionaries also provide a method named get which responds with
adefault value, either None or avalue you supply as the second argument, if the key is not in the dictionary,
which avoidsfailing in that case. The syntax for initializing a dictionary uses curly braces ({ }). Here are some
simple examples (inspired by those in the official Python tutorial) using syntax that indicates interacting with
the Python interpreter (>>> isthe interpreter prompt) - you can try these out:

>>> tel = {'jack': 4098, 'sape': 4139}

>>> tel['gquido'] = 4127

>>> tel['jack']

4098

>>> del tel['sape']

>>> tel['irv'] = 4127

>>> print(tel)

{'jack': 4098, 'quido': 4127, 'irv': 4127}
>>> 'guido’ in tel

Tr ue

>>> print(tel['jack'])

Traceback (nost recent call |ast):
File "<stdin>", line 1, in <nmodul e>

KeyError: 'jack'
>>> print(tel.get('jack'))
None

Construction environments are written to behave like aPython dictionary, and the SENV construction variablein
aconstruction environment isaPython dictionary. The0os. envi r on value that Python usesto make available
the external environment is also a dictionary. We will need these concepts in this chapter and throughout the
rest of this guide.

7.1. Using Values From the External
Environment

The external environment variable settings that the user hasin force when executing SCons are available in the Python
0s. envi ron dictionary. That syntax means the envi r on attribute of the os module. In Python, to access the
contents of amoduleyou must firsti npor t it-soyouwouldincludethei nport os statementtoany SConscri pt
file in which you want to use values from the user's external environment.

i mport os

print("Shell is", os.environ['SHELL'])

b4

SCONS 41

Construction Environments

More usefully, you can use the 0s. envi ron dictionary in your SConscri pt files to initialize construction
environments with values from the user's external environment. Read on to the next section for information on how
to do this.

7.2. Construction Environments

It israre that all of the softwarein alarge, complicated system needs to be built exactly the same way. For example,
different source files may need different options enabled on the command line, or different executable programs need
to be linked with different libraries. SCons accommodates these different build requirements by allowing you to create
and configure multiple construction environments that control how the softwareis built. A construction environment
isan object that has anumber of associated construction variables, each with aname and avalue, just like adictionary.
(A construction environment also has an attached set of Builder methods, about which we'll learn more later.)

7.2.1. Creating a Construction Environment: the
Envi r onment Function

A construction environment is created by the Envi r onment method:
env = Environnent ()

By default, SConsinitializes every new construction environment with aset of construction variables based on thetools
that it finds on your system, plus the default set of builder methods necessary for using those tools. The construction
variables are initialized with values describing the C compiler, the Fortran compiler, the linker, etc., as well as the
command lines to invoke them.

When you initialize a construction environment you can set the values of the environment's construction variables to
control how a program is built. For example:

env = Environnent (CC=' gcc', CCFLAGS='-Q2')
env. Progran(' foo.c')

The construction environment in this example is still initialized with the same default construction variable values,
except that the user has explicitly specified use of the GNU C compiler gec, and that the - O2 (optimization level two)
flag should be used when compiling the object file. In other words, the explicit initializations of $CC and $CCFLAGS
override the default valuesin the newly-created construction environment. So arun from thisexamplewould look like:

% scons -Q

gcc -0 foo.o -c -2 foo.c
gcc -o foo foo.o

7.2.2. Fetching Values From a Construction Environment

Y ou can fetch individual values, known as Construction Variabl es, using the same syntax used for accessing individual
named itemsin a Python dictionary:

env = Environment ()
print("CCis: %" %env['CC])

Iy
=== SCONS 42

Fetching Values From a Construction Environment

print("LATEX is: %" % env.get (' LATEX , None))

This example SConst r uct file doesn't contain instructions for building any targets, but because it's still a valid
SConst r uct it will be evaluated and the Python pri nt calls will output the values of $CC and SLATEX for us
(remember using the . get () method for fetching means we get a default value back, rather than a failure, if the
variableis not set):

% scons -Q

CCis: cc
LATEX is: None
scons: ' is up to date.

A construction environment is actually an object with associated methods and attributes. If you want to have direct
access to only the dictionary of construction variables you can fetch this using the env. Di cti onary method
(although it'srarely necessary to use this method):

env = Environnent (FOO=' foo', BAR='bar')

cvars = env.Dictionary()

for key in ["OBISUFFI X', 'LIBSUFFI X , 'PROGSUFFI X]:
print("key = %, value = %" % (key, cvars[key]))

This SConst r uct filewill print the specified dictionary items for us on POSIX systems as follows:

% scons -Q

key = OBISUFFI X, value = .0
key = LIBSUFFI X, value = .a
key = PROGSUFFI X, val ue =
scons: ' is up to date.

And on Windows:

C.\>scons -Q

key = OBISUFFI X, val ue = . obj
key = LIBSUFFI X, value = .lib
key = PROGSUFFI X, val ue = .exe
scons: .' is up to date.

If you want to loop and print the values of all of the construction variables in a construction environment, the Python
code to do that in sorted order might look something like:

env = Environnent ()
for itemin sorted(env.Dictionary().itens()):
print("construction variable = '%', value = '"%'" %item

It should be noted that for the previous example, there is actually a construction environment method that does the
same thing more simply, and tries to format the output nicely aswell:

env = Environment ()
print (env. Dunp())

Iy
=== SCONS 43

Expanding Va ues From a Construction Environment: the
subst Method

7.2.3. Expanding Values From a Construction
Environment: the subst Method

Another way to get information from a construction environment is to use the subst method on a string containing

$ expansions of construction variable names. As a simple example, the example from the previous section that used
env[' CC] tofetch the value of $CC could also be written as:

env = Environment ()
print("CCis: %" % env.subst('$CC))

One advantage of using subst to expand stringsisthat construction variablesin the result get re-expanded until there
are no expansions left in the string. So asimple fetch of avalue like $CCCOM

env = Environment (CCFLAGS=' - DFQO)
print("CCCOMis: %" % env[' CCCOM])

Will print the unexpanded value of $CCCOM showing us the construction variables that still need to be expanded:

% scons -Q
CCCOM i s: $CC $CCFLAGS $CPPFLAGS $ CPPDEFFLAGS $ CPPI NCFLAGS -c -0 $TARGET $SOURCES
scons: ~.' is up to date.

Calling the subst method on $CCOM however:

env = Environnent (CCFLAGS=' - DFQO)
print("CCCOMis: %" % env.subst (' $CCCOM))

Will recursively expand all of the construction variables prefixed with $ (dollar signs), showing us the final outpuit:

% scons -Q
CCCOM is: gcc -DFOO -c -0
scons: ~.' is up to date.

Note that because we're not expanding this in the context of building something there are no target or source files for
$TARGET and $SOURCES to expand.

7.2.4. Handling Problems With Value Expansion

If a problem occurs when expanding a construction variable, by default it is expandedto' ' (an empty string), and
will not cause scons to fail.

env = Environmnent ()
print("value is: 9%"% nv.subst('->$M SSI NG-'))

Iy
=== SCONS 44

Contralling the Default Construction Environment: the
Def aul t Envi ronnment Function

% scons -Q
val ue is: -><-
scons: ' is up to date.

This default behaviour can be changed using the Al | owSubst Except i ons function. When a problem occurswith
avariable expansion it generates an exception, and the Al | owSubst Except i ons function controlswhich of these
exceptions are actually fatal and which are allowed to occur safely. By default, NaneEr r or and | ndexEr r or are
the two exceptionsthat are allowed to occur: soinstead of causing sconsto fail, these are caught, the variable expanded
to' ' and scons execution continues. To require that all construction variable names exist, and that indexes out of
range are not allowed, call Al | owSubst Except i ons with no extra arguments.

Al | owSubst Except i ons()
env = Environnent ()
print("value is: 9%"%nv.subst('->$M SSI NG-'))

% scons -Q

scons: *** NaneError "nane 'M SSING is not defined trying to evaluate *$M SSI NG
File "/home/ ny/ project/SConstruct”, line 3, in <nmodul e>

This can aso be used to allow other exceptions that might occur, most usefully with the ${. ..} construction
variable syntax. For example, thiswould allow zero-division to occur in avariable expansion in addition to the default
exceptions alowed

Al | owSubst Except i ons(| ndexError, NanmeError, ZeroDi visionError)
env = Environnent ()
print("value is: %"%nv.subst('->${1 / 0}<-'))

% scons -Q
val ue is: -><-
scons: ' is up to date.

If Al | owSubst Excepti ons iscalled multiple times, each call completely overwrites the previous list of allowed
exceptions.

7.2.5. Controlling the Default Construction Environment:
the Def aul t Envi ronnent Function

All of the Builder functionsthat we'veintroduced sofar, likePr ogr amandLi br ar y, useaconstruction environment
that contains settings for the various compilers and other tools that SCons configures by default, or otherwise knows
about and has discovered on your system. If not invoked as methods of a specific construction environment, they use
the default construction environment The goal of the default construction environment isto make many configurations
"just work" to build software using readily available tools with a minimum of configuration changes.

If needed, you can control the default construction environment by using the Def aul t Envi r onnment function to
initialize various settings by passing them as keyword arguments:

Def aul t Envi ronment (CC='/ usr/ | ocal / bi n/ gcc')

Iy
=== SCONS 45

Multiple Construction Environments

When configured as above, all calls to the Pr ogr amor Obj ect Builder will build object files with the / usr/
| ocal / bi n/ gcc compiler.

The Def aul t Envi r onnment function returns the initialized default construction environment object, which can
then be manipulated like any other construction environment (note that the default environment works like asingleton
- it can have only one instance - so the keyword arguments are processed only on thefirst call. On any subsequent call
the existing object isreturned). So the following would be equival ent to the previous example, setting the $CCvariable
to/ usr/ 1 ocal / bi n/ gcc but as a separate step after the default construction environment has been initialized:

def _env = Defaul t Envi ronnment ()
def _env['CC] = '/usr/local/bin/gcc'

One very common use of the Def aul t Envi r onnment functionisto speed up SConsinitialization. As part of trying
to make most default configurations "just work," SCons will actually search the local system for installed compilers
and other utilities. This search can take time, especially on systems with slow or networked file systems. If you know
which compiler(s) and/or other utilities you want to configure, you can control the search that SCons performs by
specifying some specific tool modules with which to initialize the default construction environment:

def _env = Defaul t Envi ronment (tool s=['gcc', 'gnulink'], CC='/usr/local/bin/gcc')

So the above examplewouldtell SConsto explicitly configure thedefault environment to useitsnorma GNU Compiler
and GNU Linker settings (without having to search for them, or any other utilities for that matter), and specifically to
use the compiler found at / usr/ | ocal / bi n/ gcc.

7.2.6. Multiple Construction Environments

The real advantage of construction environments is that you can create as many different ones as you need, each
tailored to a different way to build some piece of software or other file. If, for example, we need to build one program
with the - O2 flag and another with the - g (debug) flag, we would do thislike so:

opt
dbg

Envi r onment (CCFLAGS=' - Q2")
Envi r onnent (CCFLAGS=' -g')

opt. Program(' foo', 'foo.c')

dbg. Program(' bar', 'bar.c')

% scons -Q

CC -0 bar.o -c -g bar.c
CC -0 bar bar.o

cc -o foo.o -c -2 foo.c
cc -o foo foo.o

We can even use multiple construction environments to build multiple versions of asingle program. If you do this by

simply trying to use the Pr ogr ambuilder with both environments, though, like this:

opt
dbg

Envi ronnent (CCFLAGS=' - 2")
Envi r onnment (CCFLAGS=' - g')

Iy
=== SCONS 46

Making Copies of Construction Environments; the
Cl one Method

opt. Program(' foo', 'foo.c')

dbg. Program(* foo', 'foo.c')

Then SCons generates the following error:

% scons -Q

scons: *** Two environnents with different actions were specified for the same target:

File "/home/ ny/ project/SConstruct”, line 6, in <nmodul e>

Thisis because thetwo Pr ogr amcalls have each implicitly told SCons to generate an object file named f 0o. o, one
with a $CCFLAGS value of - @2 and one with a $CCFLAGS value of - g. SCons can't just decide that one of them
should take precedence over the other, so it generates the