
Building Products with FreeBSD
Abstract

The FreeBSD project is a worldwide, volunteer based, and collaborative project, which develops a
portable and high-quality operating system. The FreeBSD project distributes the source code for its
product under a liberal license, with the intention of encouraging the use of its code. Collaborating
with the FreeBSD project can help organizations reduce their time to market, reduce engineering
costs and improve their product quality.

This article examines the issues in using FreeBSD code in appliances and software products. It
highlights the characteristics of FreeBSD that make it an excellent substrate for product
development. The article concludes by suggesting a few "best practices" for organizations
collaborating with the FreeBSD project.

1. Introduction
FreeBSD today is well-known as a high-performance server operating system. It is deployed on
millions of web servers and internet-facing hosts worldwide. FreeBSD code also forms an integral
part of many products, ranging from appliances such as network routers, firewalls, and storage
devices, to personal computers. Portions of FreeBSD have also been used in commercial shrink-
wrapped software (see FreeBSD as a set of building blocks).

In this article we look at the FreeBSD project as a software engineering resource-as a collection of
building blocks and processes which you can use to build products.

While FreeBSD’s source is distributed freely to the public, to fully enjoy the benefits of the project’s
work, organizations need to collaborate with the project. In subsequent sections of this article we
discuss effective means of collaboration with the project and the pitfalls that need to be avoided
while doing so.

Caveat Reader. The author believes that the characteristics of the FreeBSD Project listed in this
article were substantially true at the time the article was conceived and written (2005). However,
the reader should keep in mind that the practices and processes used by open-source communities
can change over time, and that the information in this article should therefore be taken as

Table of Contents
1. Introduction. 1

2. FreeBSD as a set of building blocks . 2

3. Collaborating with FreeBSD. 6

4. Conclusion . 9

Bibliography . 10

1

https://www.FreeBSD.org/

indicative rather than normative.

1.1. Target Audience
This document would be of interest to the following broad groups of people:

• Decision makers in product companies looking at ways to improve their product quality, reduce
their time to market and lower engineering costs in the long term.

• Technology consultants looking for best-practices in leveraging "open-source".

• Industry observers interested in understanding the dynamics of open-source projects.

• Software developers seeking to use FreeBSD and looking for ways to contribute back.

1.2. Article Goals
After reading this article you should have:

• An understanding of the goals of the FreeBSD Project and its organizational structure.

• An understanding of its development model and release engineering processes.

• An understanding of how conventional corporate software development processes differ from
that used in the FreeBSD project.

• Awareness of the communication channels used by the project and the level of transparency
you can expect.

• Awareness of optimal ways of working with the project-how best to reduce engineering costs,
improve time to market, manage security vulnerabilities, and preserve future compatibility
with your product as the FreeBSD project evolves.

1.3. Article Structure
The rest of the article is structured as follows:

• FreeBSD as a set of building blocks introduces the FreeBSD project, explores its organizational
structure, key technologies and release engineering processes.

• Collaborating with FreeBSD describes ways to collaborate with the FreeBSD project. It examines
common pitfalls encountered by corporates working with voluntary projects like FreeBSD.

• Conclusion concludes.

2. FreeBSD as a set of building blocks
FreeBSD makes an excellent foundation on which to build products:

• FreeBSD source code is distributed under a liberal BSD license facilitating its adoption in
commercial products Why you should use a BSD style license for your Open Source Project with
minimum hassle.

2

• The FreeBSD project has excellent engineering practices that can be leveraged.

• The project offers exceptional transparency into its workings, allowing organizations using its
code to plan effectively for the future.

• The culture of the FreeBSD project, carried over from the Computer Science Research Group at
The University of California, Berkeley Twenty Years of Berkeley Unix: From AT&T-Owned to
Freely Redistributable, fosters high-quality work. Some features in FreeBSD define the state of
the art.

Innovation Happens Elsewhere: Open Source as Business Strategy examines the business reasons
for using open-source in greater detail. For organizations, the benefits of using FreeBSD
components in their products include a shorter time to market, lower development costs and lower
development risks.

2.1. Building with FreeBSD
Here are a few ways organizations have used FreeBSD:

• As an upstream source for tested code for libraries and utilities.

By being "downstream" of the project, organizations leverage the new features, bug fixes and
testing that the upstream code receives.

• As an embedded OS (for example, for an OEM router and firewall device). In this model,
organizations use a customized FreeBSD kernel and application program set along with a
proprietary management layer for their device. OEMs benefit from new hardware support
being added by the FreeBSD project upstream, and from the testing that the base system
receives.

FreeBSD ships with a self-hosting development environment that allows easy creation of such
configurations.

• As a Unix compatible environment for the management functions of high-end storage and
networking devices, running on a separate processor "blade".

FreeBSD provides the tools for creating dedicated OS and application program images. Its
implementation of a BSD unix API is mature and tested. FreeBSD can also provide a stable cross-
development environment for the other components of the high-end device.

• As a vehicle to get widespread testing and support from a worldwide team of developers for
non-critical "intellectual property".

In this model, organizations contribute useful infrastructural frameworks to the FreeBSD
project (for example, see netgraph(3)). The widespread exposure that the code gets helps to
quickly identify performance issues and bugs. The involvement of top-notch developers also
leads to useful extensions to the infrastructure that the contributing organization also benefits
from.

• As a development environment supporting cross-development for embedded OSes like RTEMS
and eCOS.

3

https://man.freebsd.org/cgi/man.cgi?query=netgraph&sektion=3&format=html
http://www.rtems.com/
http://ecos.sourceware.org/

There are many full-fledged development environments in the 36000-strong collection of
applications ported and packaged with FreeBSD.

• As a way to support a Unix-like API in an otherwise proprietary OS, increasing its palatability
for application developers.

Here parts of FreeBSD’s kernel and application programs are "ported" to run alongside other
tasks in the proprietary OS. The availability of a stable and well tested Unix™ API
implementation can reduce the effort needed to port popular applications to the proprietary OS.
As FreeBSD ships with high-quality documentation for its internals and has effective
vulnerability management and release engineering processes, the costs of keeping up-to-date
are kept low.

2.2. Technologies
There are a large number of technologies supported by the FreeBSD project. A selection of these are
listed below:

• A complete system that can cross-host itself for many architectures:

• A modular symmetric multiprocessing capable kernel, with loadable kernel modules and a
flexible and easy to use configuration system.

• Support for emulation of Linux™ and SVR4 binaries at near machine speeds. Support for binary
Windows™ (NDIS) network drivers.

• Libraries for many programming tasks: archivers, FTP and HTTP support, thread support, in
addition to a full POSIX™ like programming environment.

• Security features: Mandatory Access Control (mac(9)), jails (jail(2)), ACLs, and in-kernel
cryptographic device support.

• Networking features: firewall-ing, QoS management, high-performance TCP/IP networking with
support for many extensions.

FreeBSD’s in-kernel Netgraph (netgraph(4)) framework allows kernel networking modules to be
connected together in flexible ways.

• Support for storage technologies: Fibre Channel, SCSI, software and hardware RAID, ATA and
SATA.

FreeBSD supports a number of filesystems, and its native UFS2 filesystem supports soft updates,
snapshots and very large filesystem sizes (16TB per filesystem) Soft Updates: A Technique for
Eliminating Most Synchronous Writes in the Fast Filesystem.

FreeBSD’s in-kernel GEOM (geom(4)) framework allows kernel storage modules to be composed
in flexible ways.

• Over 36000 ported applications, both commercial and open-source, managed via the FreeBSD
ports collection.

4

https://www.FreeBSD.org/platforms/
https://man.freebsd.org/cgi/man.cgi?query=mac&sektion=9&format=html
https://man.freebsd.org/cgi/man.cgi?query=jail&sektion=2&format=html
https://man.freebsd.org/cgi/man.cgi?query=netgraph&sektion=4&format=html
https://man.freebsd.org/cgi/man.cgi?query=geom&sektion=4&format=html

2.3. Organizational Structure
FreeBSD’s organizational structure is non-hierarchical.

There are essentially two kinds of contributors to FreeBSD, general users of FreeBSD, and
developers with write access (known as committers in the jargon) to the source base.

There are many thousands of contributors in the first group; the vast majority of contributions to
FreeBSD come from individuals in this group. Commit rights (write access) to the repository are
granted to individuals who contribute consistently to the project. Commit rights come with
additional responsibilities, and new committers are assigned mentors to help them learn the ropes.

Figure 1. FreeBSD Organization

Conflict resolution is performed by a nine member "Core Team" that is elected from the group of
committers.

FreeBSD does not have "corporate" committers. Individual committers are required to take
responsibility for the changes they introduce to the code. The FreeBSD Committer’s guide
Committer’s Guide documents the rules and responsibilities for committers.

FreeBSD’s project model is examined in detail in A project model for the FreeBSD Project.

2.4. FreeBSD Release Engineering Processes
FreeBSD’s release engineering processes play a major role in ensuring that its released versions are
of a high quality. At any point of time, FreeBSD’s volunteers support multiple code lines (FreeBSD
Release Branches):

• New features and disruptive code enters on the development branch, also known as the
-CURRENT branch.

• -STABLE branches are code lines that are branched from HEAD at regular intervals. Only tested
code is allowed onto a -STABLE branch. New features are allowed once they have been tested
and stabilized in the -CURRENT branch.

• -RELEASE branches are maintained by the FreeBSD security team. Only bug fixes for critical

5

https://docs.freebsd.org/en/articles/committers-guide/

issues are permitted onto -RELEASE branches.

Figure 2. FreeBSD Release Branches

Code lines are kept alive for as long as there is user and developer interest in them.

Machine architectures are grouped into "tiers"; Tier 1 architectures are fully supported by the
project’s release engineering and security teams, Tier 2 architectures are supported on a best effort
basis, and experimental architectures comprise Tier 3. The list of supported architectures is part of
the FreeBSD documentation collection.

The release engineering team publishes a road map for future releases of FreeBSD on the project’s
web site. The dates laid down in the road map are not deadlines; FreeBSD is released when its code
and documentation are ready.

FreeBSD’s release engineering processes are described in FreeBSD Release Engineering.

3. Collaborating with FreeBSD
Open-source projects like FreeBSD offer finished code of a very high quality.

While access to quality source code can reduce the cost of initial development, in the long-term the
costs of managing change begin to dominate. As computing environments change over the years
and new security vulnerabilities are discovered, your product too needs to change and adapt. Using
open-source code is best viewed not as a one-off activity, but as an ongoing process. The best
projects to collaborate with are the ones that are live; i.e., with an active community, clear goals and
a transparent working style.

• FreeBSD has an active developer community around it. At the time of writing there are many
thousands of contributors from every populated continent in the world and over 300
individuals with write access to the project’s source repositories.

• The goals of the FreeBSD project are Contributing to the FreeBSD Project:

◦ To develop a high-quality operating system for popular computer hardware, and,

◦ To make our work available to all under a liberal license.

• FreeBSD enjoys an open and transparent working culture. Nearly all discussion in the project
happens by email, on public mailing lists that are also archived for posterity. The project’s
policies are documented and maintained under revision control. Participation in the project is
open to all.

3.1. Understanding FreeBSD culture
To be able to work effectively with the FreeBSD project, you need to understand the project’s

6

https://docs.freebsd.org/en/articles/committers-guide/#archs
https://www.FreeBSD.org/releng/
https://lists.freebsd.org/
https://www.FreeBSD.org/internal/policies/

culture.

Volunteer driven projects operate under different rules than for-profit corporates. A common
mistake that companies make when venturing into the open-source world is that of underplaying
these differences.

Motivation. Most contributions to FreeBSD are done voluntarily without monetary rewards
entering the picture. The factors that motivate individuals are complex, ranging from altruism, to
an interest in solving the kinds of problems that FreeBSD attempts to solve. In this environment,
"elegance is never optional"Tutorial on Good Lisp Programming Style.

The Long Term View. FreeBSD traces its roots back nearly twenty years to the work of the
Computer Science Research Group at the University of California Berkeley.[1] A number of the
original CSRG developers remain associated with the project.

The project values long-term perspectives Teach Yourself Programming in Ten Years. A frequent
acronym encountered in the project is DTRT, which stands for "Do The Right Thing".

Development Processes. Computer programs are tools for communication: at one level
programmers communicate their intentions using a precise notation to a tool (a compiler) that
translates their instructions to executable code. At another level, the same notation is used for
communication of intent between two programmers.

Formal specifications and design documents are seldom used in the project. Clear and well-written
code and well-written change logs (A sample change log entry) are used in their place. FreeBSD
development happens by "rough consensus and running code"The Architectural Principles of the
Internet.

r151864 | bde | 2005-10-29 09:34:50 -0700 (Sat, 29 Oct 2005) | 13 lines
Changed paths:
 M /head/lib/msun/src/e_rem_pio2f.c

Use double precision to simplify and optimize arg reduction for small
and medium size args too: instead of conditionally subtracting a float
17+24, 17+17+24 or 17+17+17+24 bit approximation to pi/2, always
subtract a double 33+53 bit one. The float version is now closer to
the double version than to old versions of itself -- it uses the same
33+53 bit approximation as the simplest cases in the double version,
and where the float version had to switch to the slow general case at
|x| == 2^7*pi/2, it now switches at |x| == 2^19*pi/2 the same as the
double version.

This speeds up arg reduction by a factor of 2 for |x| between 3*pi/4 and
2^7*pi/4, and by a factor of 7 for |x| between 2^7*pi/4 and 2^19*pi/4.

A sample change log entry

Communication between programmers is enhanced by the use of a common coding standard
style(9).

7

https://man.freebsd.org/cgi/man.cgi?query=style&sektion=9&format=html

Communication Channels. FreeBSD’s contributors are spread across the world. Email (and to a
lesser extent, IRC) is the preferred means of communication in the project.

3.2. Best Practices for collaborating with the FreeBSD
project
We now look at a few best practices for making the best use of FreeBSD in product development.

Plan for the long term

Setup processes that help in tracking the development of FreeBSD. For example:

Track FreeBSD source code. The project makes it easy to mirror its SVN repository using
svnsync. Having the complete history of the source is useful when debugging complex problems
and offers valuable insight into the intentions of the original developers. Use a capable source
control system that allows you to easily merge changes between the upstream FreeBSD code
base and your own in-house code.

An annotated source listing generated using svn blame shows a portion of an annotated listing of
the file referenced by the change log in A sample change log entry. The ancestry of each line of
the source is clearly visible. Annotated listings showing the history of every file that is part of
FreeBSD are available on the web.

#REV #WHO #DATE #TEXT

176410 bde 2008-02-19 07:42:46 -0800 (Tue, 19 Feb 2008) #include
<sys/cdefs.h>
176410 bde 2008-02-19 07:42:46 -0800 (Tue, 19 Feb 2008)
__FBSDID("$FreeBSD$");
 2116 jkh 1994-08-19 02:40:01 -0700 (Fri, 19 Aug 1994)
 2116 jkh 1994-08-19 02:40:01 -0700 (Fri, 19 Aug 1994) /*
__ieee754_rem_pio2f(x,y)
 8870 rgrimes 1995-05-29 22:51:47 -0700 (Mon, 29 May 1995) *
176552 bde 2008-02-25 05:33:20 -0800 (Mon, 25 Feb 2008) * return the
remainder of x rem pi/2 in *y
176552 bde 2008-02-25 05:33:20 -0800 (Mon, 25 Feb 2008) * use double
precision for everything except passing x
152535 bde 2005-11-16 18:20:04 -0800 (Wed, 16 Nov 2005) * use
__kernel_rem_pio2() for large x
 2116 jkh 1994-08-19 02:40:01 -0700 (Fri, 19 Aug 1994) */
 2116 jkh 1994-08-19 02:40:01 -0700 (Fri, 19 Aug 1994)
176465 bde 2008-02-22 07:55:14 -0800 (Fri, 22 Feb 2008) #include <float.h>
176465 bde 2008-02-22 07:55:14 -0800 (Fri, 22 Feb 2008)
 2116 jkh 1994-08-19 02:40:01 -0700 (Fri, 19 Aug 1994) #include "math.h"

An annotated source listing generated using svn blame

Use a gatekeeper. Appoint a gatekeeper to monitor FreeBSD development, to keep an eye out for
changes that could potentially impact your products.

8

https://docs.freebsd.org/en/articles/committers-guide/#svn-advanced-use-setting-up-svnsync
https://svnweb.freebsd.org/

Report bugs upstream. If you notice bug in the FreeBSD code that you are using, file a bug
report. This step helps ensure that you do not have to fix the bug the next time you take a code
drop from upstream.

Leverage FreeBSD’s release engineering efforts

Use code from a -STABLE development branch of FreeBSD. These development branches are
formally supported by FreeBSD’s release engineering and security teams and comprise of tested
code.

Donate code to reduce costs

A major proportion of the costs associated with developing products is that of doing
maintenance. By donating non-critical code to the project, you benefit by having your code see
much wider exposure than it would otherwise get. This in turn leads to more bugs and security
vulnerabilities being flushed out and performance anomalies being identified and fixed.

Get support effectively

For products with tight deadlines, it is recommended that you hire or enter into a consulting
agreement with a developer or firm with FreeBSD experience. The FreeBSD related employment
mailing list is a useful communication channel to find talent. The FreeBSD project maintains a
gallery of consultants and consulting firms undertaking FreeBSD work. The BSD Certification
Group offers certification for all the major BSD derived OSes.

For less critical needs, you can ask for help on the project mailing lists. A useful guide to follow
when asking for help is given in How to ask questions the smart way.

Publicize your involvement

You are not required to publicize your use of FreeBSD, but doing so helps both your effort as
well as that of the project.

Letting the FreeBSD community know that your company uses FreeBSD helps improve your
chances of attracting high quality talent. A large roster of support for FreeBSD also means more
mind share for it among developers. This in turn yields a healthier foundation for your future.

Support FreeBSD developers

Sometimes the most direct way to get a desired feature into FreeBSD is to support a developer
who is already looking at a related problem. Help can range from hardware donations to direct
financial assistance. In some countries, donations to the FreeBSD project enjoy tax benefits. The
project has a dedicated donations liaison to assist donors. The project also maintains a web page
where developers list their needs.

As a policy the FreeBSD project acknowledges all contributions received on its web site.

4. Conclusion
The FreeBSD project’s goals are to create and give away the source code for a high-quality operating
system. By working with the FreeBSD project you can reduce development costs and improve your
time to market in a number of product development scenarios.

9

https://www.FreeBSD.org/support/bugreports/
https://www.FreeBSD.org/support/bugreports/
https://lists.FreeBSD.org/subscription/freebsd-jobs
https://lists.FreeBSD.org/subscription/freebsd-jobs
https://www.FreeBSD.org/commercial/consult_bycat/
http://www.bsdcertification.org/
http://www.bsdcertification.org/
https://lists.freebsd.org/
https://www.FreeBSD.org/donations/
https://www.FreeBSD.org/donations/wantlist/
https://docs.freebsd.org/en/articles/contributors/

We examined the characteristics of the FreeBSD project that make it an excellent choice for being
part of an organization’s product strategy. We then looked at the prevailing culture of the project
and examined effective ways of interacting with its developers. The article concluded with a list of
best-practices that could help organizations collaborating with the project.

Bibliography
[Carp1996] The Architectural Principles of the Internet B. Carpenter. The Internet Architecture
Board.The Internet Architecture Board. Copyright® 1996.

[ComGuide] Committer’s Guide The FreeBSD Project. Copyright® 2005.

[GoldGab2005] Innovation Happens Elsewhere: Open Source as Business Strategy Ron Goldman.
Richard Gabriel. Copyright® 2005. Morgan-Kaufmann.

[Hub1994] Contributing to the FreeBSD Project Jordan Hubbard. Copyright® 1994-2005. The
FreeBSD Project.

[McKu1999] Soft Updates: A Technique for Eliminating Most Synchronous Writes in the Fast
Filesystem Kirk McKusick. Gregory Ganger. Copyright® 1999.

[McKu1999-1] Twenty Years of Berkeley Unix: From AT&T-Owned to Freely Redistributable
Marshall Kirk McKusick. Open Sources: Voices from the Open Source Revolution O’Reilly Inc..
Copyright® 1993.

[Mon2005] Why you should use a BSD style license for your Open Source Project Bruce Montague.
The FreeBSD Project. Copyright® 2005.

[Nik2005] A project model for the FreeBSD Project Niklas Saers. Copyright® 2005. The FreeBSD
Project.

[Nor1993] Tutorial on Good Lisp Programming Style Peter Norvig. Kent Pitman. Copyright® 1993.

[Nor2001] Teach Yourself Programming in Ten Years Peter Norvig. Copyright® 2001.

[Ray2004] How to ask questions the smart way Eric Steven Raymond. Copyright® 2004.

[RelEngDoc] FreeBSD Release Engineering Murray Stokely. Copyright® 2001. The FreeBSD Project.

[1] FreeBSD’s source repository contains a history of the project since its inception, and there are CDROMs available that contain
earlier code from the CSRG.

10

http://www.ietf.org/rfc/rfc1958.txt
https://docs.freebsd.org/en/articles/committers-guide/
http://dreamsongs.com/IHE/IHE.html
https://docs.freebsd.org/en/articles/contributing/
http://www.usenix.org/publications/library/proceedings/usenix99/mckusick.html
http://www.usenix.org/publications/library/proceedings/usenix99/mckusick.html
http://www.oreilly.com/catalog/opensources/book/kirkmck.html
http://www.oreilly.com/catalog/opensources/book/toc.html
https://docs.freebsd.org/en/articles/bsdl-gpl/
https://docs.freebsd.org/en/books/dev-model/
http://www.norvig.com/luv-slides.ps
http://www.norvig.com/21-days.html
http://www.catb.org/~esr/faqs/smart-questions.html
https://docs.freebsd.org/en/articles/releng/

	Building Products with FreeBSD
	Table of Contents
	1. Introduction
	2. FreeBSD as a set of building blocks
	3. Collaborating with FreeBSD
	4. Conclusion
	Bibliography

