FreeBSD Porter’s Handbook

Table of Contents

1. Introduction

2. Making a New Port

3. Quick Porting
3.1. Writing the Makefile
3.2. Writing the Description Files

3.3. Creating the Checksum File

3.4. Testing the Port

3.5. Checking the Port with portlint
3.6. Submitting the New Port

4. Slow Porting
4.1. How Things Work
4.2. Getting the Original Sources
4.3. Modifying the Port
4.4. Patching
4.5. Configuring

4.6. Handling User Input

5. Configuring the Makefile

5.1. The Original Source

5.2. Naming

5.3.

Categorization

5.4. The Distribution Files
5.5. MAINTAINER

3.6.

COMMENT

5.7. Project website

5.8. Licenses

5.9.

PORTSCOUT
5.10.
5.11.
5.12.
5.13.
5.14.
5.15.
5.16.
5.17.
5.18.

Dependencies

Slave Ports and MASTERDIR

Man Pages

Info Files

Makefile Options

Specifying the Working Directory

Conflict Handling

Installing Files

Use BINARY_ALIAS to Rename Commands Instead of Patching the Build

6. Special Considerations

6.1. Splitting long files

6.2. Staging

10
11
11
11
13
13
14
14
16
16
17
18
18
22
22
23
23
23
33
40
64
65
65
66
77
78
84
85
85
85
105
106
108
111
113
113
113

6.3. Bundled Libraries 114

6.4. Shared Libraries 116
6.5. Ports with Distribution Restrictions or Legal Concerns 117
6.6. Building Mechanisms 118
6.7. Using GNU Autotools 135
6.8. Using GNU gettext 135
6.9. Using Perl 137
6.10. Using X11 139
6.11. Using GNOME 141
6.12. GNOME Components 143
6.13. Using Qt 148
6.14. Using KDE 154
6.15. Using LXQt 161
6.16. Using Java 161
6.17. Web Applications, Apache and PHP 165
6.18. Using Python 168
6.19. Using Tcl/Tk 170
6.20. Using SDL 171
6.21. Using wxWidgets 172
6.22. Using Lua 176
6.23. Using Guile 180
6.24. Using iconv 184
6.25. Using Xfce 185
6.26. Using Budgie 187
6.27. Using Databases 187
6.28. Starting and Stopping Services (rc Scripts) 188
6.29. Adding Users and Groups 191
6.30. Ports That Rely on Kernel Sources 192
6.31. Go Libraries 192
6.32. Haskell Libraries 192
6.33. Shell Completion Files 192
7. Flavors 194
7.1. An Introduction to Flavors 194
7.2. Using FLAVORS 194
7.3. USES=php and Flavors 196
7.4. USES=python and Flavors 197
7.5. USES=1ua and Flavors 199
7.6. USES=guile and Flavors 199
8. Advanced pkg-plist Practices 200
8.1. Changing pkg-plist Based on Make Variables 200
8.2. Empty Directories 201

8.3. Configuration Files 202

8.4. Dynamic Versus Static Package List 202
8.5. Automated Package List Creation 203
8.6. Expanding Package List with Keywords 204
9. pkg-* 212
9.1. pkg-message 212
9.2. pkg-install, pkg-pre-install, and pkg-post-install 215
9.3. pkg-deinstall, pkg-pre-deinstall, and pkg-post-deinstall 215
9.4. Changing the Names of pkg-* 216
9.5. Making Use of SUB_FILES and SUB_LIST 216
10. Testing the Port 218
10.1. Running make describe 218
10.2. Running make test 218
10.3. Portclippy / Portfmt 218
10.4. Portlint 219
10.5. Port Tools 219
10.6. PREFIX and DESTDIR 219
10.7. poudriere 220
10.8. Debugging ports 228
11. Upgrading a Port 229
11.1. Using Git to Make Patches 230
11.2. UPDATING and MOVED 232
12. Security 234
12.1. Why Security is So Important 234
12.2. Fixing Security Vulnerabilities 234
12.3. Keeping the Community Informed 235
13. Dos and Don’ts 240
13.1. Introduction 240
13.2. WRKDIR 240
13.3. WRKDIRPREFIX 240
13.4. Differentiating Operating Systems and OS Versions 240
13.5. Writing Something After bsd.port.mk 241
13.6. Use the exec Statement in Wrapper Scripts 241
13.7. Do Things Rationally 242
13.8. Respect Both CC and CXX 242
13.9. Respect CFLAGS 243
13.10. Verbose Build Logs 243
13.11. Feedback 244
13.12. README.html 244
13.13. Marking a Port Not Installable with BROKEN, FORBIDDEN, or IGNORE 244
13.14. Architectural Considerations 245

13.15. Marking a Port for Removal with DEPRECATED or EXPIRATION_DATE = 247

13.16. Avoid Use of the .error CONStruct 247
13.17. Usage of sysCtl. 248
13.18. Rerolling Distfiles. 248
13.19. Use POSIX Standards. 248
13.20. Miscellanea 249
14. A Sample Makefile. 250
15. Order of Variables in Port Makefiles. 252
15.1. PORTNAME BLOCKo oo 252
15.2. PATCHFILES BIOCK oo oo 253
15.3. MAINTAINER BIOCK oo oo 253
15.4. LICENSE BIOCKo 253
15.5. Generic BROKEN/IGNORE/DEPRECATED MeSSAgeS. oo oottt 253
15.6. The Dependencies Block. 254
15.7. FLAVOTS . . o oo 254
15.8. USES and USE_X . . . oo 254
15.9. Standard bsd.port.mk Variables. 255
15.10. Options and Helpers 255
15.11. The Rest of the Variables 256
15.12. The Targets 256
16. Keeping Upo 257
16.1. FreshPOrts 257
16.2. The Web Interface to the Source Repository........... 257
16.3. The FreeBSD Ports Mailing List 257
16.4. The FreeBSD Port Building Cluster 257
16.5. Portscout: the FreeBSD Ports Distfile Scanner 258
17.USING USES MACTOS oot 259
17.1. An Introduction to USES. 259
0 259
17.3. 303 o 260
174, autorecon . © .o 260
17.5.blaslapack.o o 260
17,6, bdD 260
177, DISON 261
17.8.DUAQIE oo 261
17.9. cabal .« 261
L1700, Cargo .o oo 263
1700, charsetfix oo 263
17,02, cmake .o 263
17,08, COmMPI LT o 263
1704, CPe 264

O 264
17.16. desktop-file-utils. .. o 265
17.17.desthack . ..o 265
1708, display ..o 265
17.19. dOSZUNTX .« oo 265
17.20. drupal oo 265
17,20, ebUr T 28 e 266
17,22, 100N oo 266
17,23, et et o 266
17.24. r1ang ..o 266
17.25. fakeroot ... 267
17.26. Fam .« 267
17,27, FArebird .. 267
17,28, fONtS 267
17,20, fortran oo 267
17.30. TUSE « oo 267
17,30 gem o 268
17,32, gettext « . 268
17.33. gettext-runtime. o 268
17.34. gettext-tools. ... o 268
17.35. ghostseript ... 268
17,36, gL o 268
17.37. gmake .. 269
17.38. gOMe . oo 269
17.30. 0 .« oo 272
17.40. gpert o 273
17.40. grantlee ..o 273
1742, groff e 273
1743, 9SSAPT « oo 273
17.44. gSTreamer 274
1745, gUILe « oo 277
17.46. horde ..o 277
L1747, TCONV © oo 278
17.48. TMaKe . 278
17.49. Kde oo 278
17.50. KMOG .« oo 278
1750, 1dap .« oo 279
17,52, Tha 279
17.53. 11barchive ... 279
17.54. Libedit - .o 279
17.55. 1Ibt00L .o 279

17.56.
17.57.
17.58.
17.59.
17.60.
17.61.
17.62.
17.63.
17.64.
17.65.
17.66.
17.67.
17.68.
17.69.
17.70.
17.71.
17.72.
17.73.
17.74.
17.75.
17.76.
17.77.
17.78.
17.79.
17.80.
17.81.
17.82.
17.83.
17.84.
17.85.
17.86.
17.87.
17.88.
17.89.
17.90.
17.91.
17.92.
17.93.
17.94.
17.95.
17.96.

LaNUX 280
LLVM 282
10Calbase ..o 282
LU 282
LU T 283
IXQE o 283
MAGTCK oo 283
MaKeTNTO .« o 284
Makese Lt o 284
MAt e 284
MESOM © o ottt e e e e 285
ML aPOT T . 285
MINTZID oo 285
MYSQL 285
110 3T 285
MOt L 286
MCUT S ottt ettt et e 286
nexteloud 286
MTNJA oottt 286
MOOE TS 286
0D C L 286
OC AV e 286
OPENAL L. 287
PAth T aX L 287
DAL 287
P LD L 287
POSOL 288
PR L 288
PKGCONTIg o 290
DU 290
DY 290
PY St 292
PYLNON 292
AMAT L L 292
MAKE o 293
O o 293
QE-diSt o 293
FEAALTNe o 294
TUDY 294
SAMDA . oo 295
SCOMS ottt et e 295

17.97. shared-mime-info 295

17.98. shebangfix 296
17.99. sqlite .o 298
17000, S .o 298
L7 00, Bar 299
17002, O 299
17103 termingo ..o 299
17 A0, TeX o 299
17005, Tk . 301
17006, UTdfax .o 301
17.007. uniquetiles .. 301
17008, vala . .. 301
17,009, varnish .o 301
17.110. webplugin ... 301
17 00 XTCe 302
17002, XOTG - oo 302
17,013, X0rg-Cat . oo 304
0 s 1 304
18. __FreeBSD_version Values 305
18.1. FreeBSD 15 VEeIrSIONS o 305
18.2. FreeBSD 14 VEIrSIONSo 307
18.3. FreeBSD 13 VEeISIONS oo 318
18.4. FreeBSD 12 VEIrSIONS 339
18.5. FreeBSD 11 VEIrSIONS 355
18.6. FreeBSD 10 VEIrSIONS o 375
18.7. FreeBSD 9 VEIrSIONS 389
18.8. FreeBSD 8 VEISIONS 398
18.9. FreeBSD 7 VEISIONS 414
18.10. FreeBSD 6 VEIrSIONS o 423
18.11. FreeBSD 5 VEIrSIONS o 429
18.12. FreeBSD 4 VEISIONSo 441
18.13. FreeBSD 3 VEISIONS 446
18.14. FreeBSD 2.2 VETISIONIS.ottt 447
18.15. FreeBSD 2 Before 2.2-RELEASE VersSiONS 0 i 448

Chapter 1. Introduction

The FreeBSD Ports Collection is the way almost everyone installs applications ("ports") on FreeBSD.
Like everything else about FreeBSD, it is primarily a volunteer effort. It is important to keep this in
mind when reading this document.

In FreeBSD, anyone may submit a new port, or volunteer to maintain an existing unmaintained
port. No special commit privilege is needed.

Chapter 2. Making a New Port

Interested in making a new port, or upgrading existing ports? Great!

What follows are some guidelines for creating a new port for FreeBSD. To upgrade an existing port,
read this, then read Upgrading a Port.

When this document is not sufficiently detailed, refer to /usr/ports/Mk/bsd.port.mk, which is
included by all port Makefiles. Even those not hacking Makefiles daily can gain much knowledge
from it. Additionally, specific questions can be sent to the FreeBSD ports mailing list.

Only a fraction of the variables (VAR) that can be overridden are mentioned in this
document. Most (@(f not all) are documented at the start of

o [usr/ports/Mk/bsd.port.mk; the others probably ought to be. Note that this file uses
a non-standard tab setting: Emacs and Vim will recognize the setting on loading
the file. Both vi(1) and ex(1) can be set to use the correct value by typing :set
tabstop=4 once the file has been loaded.

Looking for something easy to start with? Take a look at the list of requested ports and see if you
can work on one (or more).

10

https://lists.FreeBSD.org/subscription/freebsd-ports
https://man.freebsd.org/cgi/man.cgi?query=vi&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ex&sektion=1&format=html
https://wiki.freebsd.org/WantedPorts

Chapter 3. Quick Porting

This section describes how to quickly create a new port. For applications where this quick method
is not adequate, the full "Slow Porting" process is described in Slow Porting.

First, get the original tarball and put it into DISTDIR, which defaults to /usr/ports/distfiles.

These steps assume that the software compiled out-of-the-box. In other words,
o absolutely no changes were required for the application to work on a FreeBSD
system. If anything had to be changed, refer to Slow Porting.

It is recommended to set the DEVELOPER make(1) variable in /etc/make.conf before
getting into porting.

o # echo DEVELOPER=yes >> /etc/make.conf

This setting enables the "developer mode" that displays deprecation warnings and
activates some further quality checks on calling make.

3.1. Writing the Makefile

The minimal Makefile would look something like this:

PORTNAME= oneko

DISTVERSION= 1.1b

CATEGORIES= games

MASTER_SITES= ftp://ftp.rediris.es/sites/ftp.freebsd.org/pub/FreeBSD/

MAINTAINER= youremail@example.com
COMMENT= Cat chasing a mouse all over the screen

Www= http://www.daidouji.com/oneko/

.include <bsd.port.mk>

Try to figure it out. A more detailed example is shown in the sample Makefile section.

3.2. Writing the Description Files

There are two description files that are required for any port, whether they actually package or not.
They are pkg-descr and pkg-plist. Their pkg- prefix distinguishes them from other files.

3.2.1. pkg-descr

This is a longer description of the port. One to a few paragraphs concisely explaining what the port
does is sufficient.

11

https://man.freebsd.org/cgi/man.cgi?query=make&sektion=1&format=html

This is not a manual or an in-depth description on how to use or compile the port!
Please be careful when copying from the README or manpage. Too often they are
not a concise description of the port or are in an awkward format. For example,

o manpages have justified spacing, which looks particularly bad with monospaced
fonts.

On the other hand, the content of pkg-descr must be longer than the COMMENT line
from the Makefile. It must explain in more depth what the port is all about.

A well-written pkg-descr describes the port completely enough that users would not have to consult
the documentation or visit the website to understand what the software does, how it can be useful,
or what particularly nice features it has. Mentioning certain requirements like a graphical toolkit,
heavy dependencies, runtime environment, or implementation languages help users decide
whether this port will work for them.

o The URL that used to be included as the last line of the pkg-descr file has been
moved to the Makefile.

3.2.2. pkg-plist

This file lists all the files installed by the port. It is also called the "packing list" because the package
is generated by packing the files listed here. The pathnames are relative to the installation prefix
(usually /usr/local).

Here is a small example:

bin/oneko
man/man1/oneko.1.gz
1ib/X11/app-defaults/Oneko
1ib/X11/0oneko/cat1.xpm
1ib/X11/0oneko/cat2.xpm
1ib/X11/0oneko/mouse.xpm

Refer to the pkg-create(8) manual page for details on the packing list.

It is recommended to keep all the filenames in this file sorted alphabetically. It will

e make verifying changes when upgrading the port much easier. The sorting should
be applied after variable expansion takes place. The framework does this correctly
when the package list is generated automatically.

(r') Creating a packing list manually can be a very tedious task. If the port installs a
- large numbers of files, creating the packing list automatically might save time.

There is only one case when pkg-plist can be omitted from a port. If the port installs just a handful

of files, list them in PLIST_FILES, within the port’s Makefile. For instance, we could get along without
pkg-plist in the above oneko port by adding these lines to the Makefile:

12

https://man.freebsd.org/cgi/man.cgi?query=pkg-create&sektion=8&format=html

PLIST_FILES= bin/oneko \
man/man1/oneko.1.g9z \
1ib/X11/app-defaults/Oneko \
1ib/X11/0oneko/cat1.xpm \
1ib/X11/0oneko/cat2.xpm \
1ib/X11/0oneko/mouse.xpm

Usage of PLIST_FILES should not be abused. When looking for the origin of a file,
o people usually try to grep through the pkg-plist files in the ports tree. Listing files
in PLIST_FILES in the Makefile makes that search more difficult.

If a port needs to create an empty directory, or creates directories outside of
(;) ${PREFIX} during installation, refer to Cleaning Up Empty Directories for more
information.

As PLIST_FILES is a make(1) variable, any entry with spaces must be quoted. For
example, if using keywords described in pkg-create(8) and Expanding Package List
@ with Keywords, the entry must be quoted.

PLIST FILES= "@sample ${ETCDIR}/oneko.conf.sample"

Later we will see how pkg-plist and PLIST_FILES can be used to fulfill more sophisticated tasks.

3.3. Creating the Checksum File

Just type make makesum. The ports framework will automatically generate distinfo. Do not try to
generate the file manually.

3.4. Testing the Port

Make sure that the port rules do exactly what is desired, including packaging up the port. These are
the important points to verify:

» pkg-plist does not contain anything not installed by the port.

* pkg-plist contains everything that is installed by the port.

* The port can be installed using the install target. This verifies that the install script works
correctly.

* The port can be deinstalled properly using the deinstall target. This verifies that the deinstall
script works correctly.

* The port only has access to network resources during the fetch target phase. This is important
for package builders, such as ports-mgmt/poudriere.

* Make sure that make package can be run as a normal user (that is, not as root). If that fails, the
software may need to be patched. See also fakeroot and uidfix.

13

https://man.freebsd.org/cgi/man.cgi?query=make&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=pkg-create&sektion=8&format=html
https://cgit.freebsd.org/ports/tree/ports-mgmt/poudriere/

Procedure: Recommended Test Ordering

1. make stage
2. make stage-qa

3. make package

-~

make install

“

make deinstall

6. make package (as user)
Make certain no warnings are shown in any of the stages.

Thorough automated testing can be done with ports-mgmt/poudriere from the Ports Collection, see
poudriere for more information. It maintains jails where all of the steps shown above can be
tested without affecting the state of the host system.

3.5. Checking the Port with portlint

Please use portlint to see if the port conforms to our guidelines. The ports-mgmt/portlint program
is part of the ports collection. In particular, check that the Makefile is in the right shape and the
package is named appropriately.

o Do not blindly follow the output of portlint. It is a static lint tool and sometimes
gets things wrong.

3.6. Submitting the New Port

Before submitting the new port, read the DOs and DON’Ts section.

Once happy with the port, the only thing remaining is to put it in the main FreeBSD ports tree and
make everybody else happy about it too.

o We do not need the work directory or the pkgname.txz package, so delete them
now.

Next, create a patch(1), file. Assuming the port is called oneko and is in the games category.

Example 1. Creating a .diff for a New Port

Add all the files with git add ., then review the diff with git diff. For example:

9
%

git add .
% git diff --staged

Make sure that all required files are included, then commit the change to your local branch
and generate a patch with git format-patch

14

https://cgit.freebsd.org/ports/tree/ports-mgmt/poudriere/
https://cgit.freebsd.org/ports/tree/ports-mgmt/portlint/
https://man.freebsd.org/cgi/man.cgi?query=patch&sektion=1&format=html

)
°

it commit
it format-patch origin/main

g
%9
Patch generated with git format-patch will include author identity and email addresses,
making it easier for developers to apply (with git am) and give proper credit.

To make it easier for committers to apply the patch on their working copy of the ports
tree, please generate the .diff from the base of your ports tree.

Submit oneko.diff with the bug submission form. Use product "Ports & Packages", component
"Individual Port(s)", and follow the guidelines shown there. Add a short description of the program
to the Description field of the PR (perhaps a short version of COMMENT), and remember to add
oneko.diff as an attachment.

Giving a good description in the summary of the problem report makes the work

o of port committers and triagers a lot easier. The expected format for new ports is
"[NEW PORT] category/portname short description of the port". Using this scheme
makes it easier and faster to begin the work of committing the new port.

After submitting the port, please be patient. The time needed to include a new port in FreeBSD can
vary from a few days to a few months. A simple search form of the Problem Report database can be
searched at https://bugs.freebsd.org/bugzilla/query.cgi.

To get a listing of open port PRs, select Open and Ports & Packages in the search form, then click
[Search].

After looking at the new port, we will reply if necessary, and commit it to the tree. The submitter’s
name will also be added to the list of Additional FreeBSD Contributors and other files.

Previously it was possible to submit patches for new ports using a shar(1) file; this

o is no longer the case with the evolution of git(1). Committers no longer accept
shar(1) files as their use is prone to mistake and does not add the relevant entry in
the category’s Makefile.

15

https://bugs.freebsd.org/submit/
https://bugs.freebsd.org/bugzilla/query.cgi
https://docs.freebsd.org/en/articles/contributors/#contrib-additional
https://man.freebsd.org/cgi/man.cgi?query=shar&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=git&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=shar&sektion=1&format=html

Chapter 4. Slow Porting

Okay, so it was not that simple, and the port required some modifications to get it to work. In this
section, we will explain, step by step, how to modify it to get it to work with the ports paradigm.

4.1. How Things Work

First, this is the sequence of events which occurs when the user first types make in the port’s
directory. Having bsd.port.mk in another window while reading this really helps to understand it.

But do not worry, not many people understand exactly how bsd.port.mk is working... :-)

1.

The fetch target is run. The fetch target is responsible for making sure that the tarball exists
locally in DISTDIR. If fetch cannot find the required files in DISTDIR it will look up the URL
MASTER_SITES, which is set in the Makefile, as well as our FTP mirrors where we put distfiles as
backup. It will then attempt to fetch the named distribution file with FETCH, assuming that the
requesting site has direct access to the Internet. If that succeeds, it will save the file in DISTDIR
for future use and proceed.

The extract target is run. It looks for the port’s distribution file (typically a compressed tarball)
in DISTDIR and unpacks it into a temporary subdirectory specified by WRKDIR (defaults to work).

The patch target is run. First, any patches defined in PATCHFILES are applied. Second, if any patch
files named patch-* are found in PATCHDIR (defaults to the files subdirectory), they are applied at
this time in alphabetical order.

The configure target is run. This can do any one of many different things.
a. If it exists, scripts/configure is run.
b. If HAS_CONFIGURE or GNU_CONFIGURE is set, WRKSRC/configure is run.

The build target is run. This is responsible for descending into the port’s private working
directory (WRKSRC) and building it.

The stage target is run. This puts the final set of built files into a temporary directory (STAGEDIR,
see Staging). The hierarchy of this directory mirrors that of the system on which the package
will be installed.

The package target is run. This creates a package using the files from the temporary directory
created during the stage target and the port’s pkg-plist.

The install target is run. This installs the package created during the package target into the
host system.

The above are the default actions. In addition, define targets pre-something or post-something, or put
scripts with those names, in the scripts subdirectory, and they will be run before or after the default
actions are done.

For example, if there is a post-extract target defined in the Makefile, and a file pre-build in the
scripts subdirectory, the post-extract target will be called after the regular extraction actions, and
pre-build will be executed before the default build rules are done. It is recommended to use
Makefile targets if the actions are simple enough, because it will be easier for someone to figure out

16

what kind of non-default action the port requires.

The default actions are done by the do-something targets from bsd.port.mk. For example, the
commands to extract a port are in the target do-extract. If the default target does not do the job
right, redefine the do-something target in the Makefile.

The "main" targets (for example, extract, configure, etc.) do nothing more than
make sure all the stages up to that one are completed and call the real targets or

o scripts, and they are not intended to be changed. To fix the extraction, fix do-
extract, but never ever change the way extract operates! Additionally, the target
post-deinstall is invalid and is not run by the ports infrastructure.

Now that what goes on when the user types make install is better understood, let us go through the
recommended steps to create the perfect port.

4.2. Getting the Original Sources

Get the original sources (normally) as a compressed tarball (foo.tar.gz or foo.tar.bz2) and copy it
into DISTDIR. Always use mainstream sources when and where possible.

Set the variable MASTER_SITES to reflect where the original tarball resides. Shorthand definitions
exist for most mainstream sites in bsd.sites.mk. Please use these sites-and the associated
definitions-if at all possible, to help avoid the problem of having the same information repeated
over again many times in the source base. As these sites tend to change over time, this becomes a
maintenance nightmare for everyone involved. See MASTER_SITES for details.

If there is no FTP/HTTP site that is well-connected to the net, or can only find sites that have
irritatingly non-standard formats, put a copy on a reliable FTP or HTTP server (for example, a home

page).

If a convenient and reliable place to put the distfile cannot be found, we can "house" it ourselves on
ftp.FreeBSD.org; however, this is the least-preferred solution. The distfile must be placed into
~/public_distfiles/ of someone’s freefall account. Ask the person who commits the port to do this.
This person will also set MASTER_SITES to LOCAL/username where username is their FreeBSD cluster
login.

If the port’s distfile changes all the time without any kind of version update by the author, consider
putting the distfile on a home page and listing it as the first MASTER_SITES. Try to talk the port author
out of doing this; it really does help to establish some kind of source code control. Hosting a specific
version will prevent users from getting checksum mismatch errors, and also reduce the workload of
maintainers of our FTP site. Also, if there is only one master site for the port, it is recommended to
house a backup on a home page and list it as the second MASTER_SITES.

If the port requires additional patches that are available on the Internet, fetch them too and put
them in DISTDIR. Do not worry if they come from a site other than where the main source tarball
comes, we have a way to handle these situations (see the description of PATCHFILES below).

17

4.3. Modifying the Port

Unpack a copy of the tarball in a private directory and make whatever changes are necessary to get
the port to compile properly under the current version of FreeBSD. Keep careful track of steps, as
they will be needed to automate the process shortly. Everything, including the deletion, addition, or
modification of files has to be doable using an automated script or patch file when the port is
finished.

If the port requires significant user interaction/customization to compile or install, take a look at
one of Larry Wall’s classic Configure scripts and perhaps do something similar. The goal of the new
ports collection is to make each port as "plug-and-play" as possible for the end-user while using a
minimum of disk space.

Unless explicitly stated, patch files, scripts, and other files created and contributed
to the FreeBSD ports collection are assumed to be covered by the standard BSD
copyright conditions.

4.4. Patching

In the preparation of the port, files that have been added or changed can be recorded with diff(1)
for later feeding to patch(1). Doing this with a typical file involves saving a copy of the original file
before making any changes using a .orig suffix.

% cp file file.orig

After all changes have been made, cd back to the port directory. Use make makepatch to generate
updated patch files in the files directory.

Use BINARY_ALIAS to substitute hardcoded commands during the build and avoid
(;) patching build files. See Use BINARY_ALIAS to Rename Commands Instead of
et Patching the Build for more information.

4.4.1. General Rules for Patching

Patch files are stored in PATCHDIR, usually files/, from where they will be automatically applied. All
patches must be relative to WRKSRC. Typically WRKSRC is a subdirectory of WRKDIR, the directory where
the distfile is extracted. Use make -V WRKSRC to see the actual path. The patch names are to follow
these rules:

* Avoid having more than one patch modify the same file. For example, having both patch-
foobar.c and patch-foobar.c2 making changes to ${WRKSRC}/foobar.c makes them fragile and
difficult to debug.

* When creating names for patch files, replace each underscore (_) with two underscores (__) and
each slash (/) with one underscore (_). For example, to patch a file named src/freeglut_joystick.c,
name the corresponding patch patch-src_freeglut__joystick.c. Do not name patches like patch-aa
or patch-ab. Always use the path and file name in patch names. Using make makepatch

18

https://man.freebsd.org/cgi/man.cgi?query=diff&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=patch&sektion=1&format=html

automatically generates the correct names.

* A patch may modify multiple files if the changes are related and the patch is named
appropriately. For example, patch-add-missing-stdlib.h.

* Only use characters [-+._a-zA-70-9] for naming patches. In particular, do not use :: as a path
separator, use _ instead.

Minimize the amount of non-functional whitespace changes in patches. It is common in the Open
Source world for projects to share large amounts of a code base, but obey different style and
indenting rules. When taking a working piece of functionality from one project to fix similar areas
in another, please be careful: the resulting patch may be full of non-functional changes. It not only
increases the size of the ports repository but makes it hard to find out what exactly caused the
problem and what was changed at all.

If a file must be deleted, do it in the post-extract target rather than as part of the patch.

4.4.2. Manual Patch Generation

Manual patch creation is usually not necessary. Automatic patch generation as
described earlier in this section is the preferred method. However, manual
patching may be required occasionally.

Patches are saved into files named patch-* where * indicates the pathname of the file that is
patched, such as patch-Imakefile or patch-src-config.h. Patches with file names which do not start
with patch- will not be applied automatically.

After the file has been modified, diff(1) is used to record the differences between the original and
the modified version. -u causes diff(1) to produce "unified" diffs, the preferred form.

% diff -u file.orig file > patch-pathname-file

When generating patches for new, added files, -N is used to tell diff(1) to treat the non-existent
original file as if it existed but was empty:

% diff -u -N newfile.orig newfile > patch-pathname-newfile

Using the recurse (-r) option to diff(1) to generate patches is fine, but please look at the resulting
patches to make sure there is no unnecessary junk in there. In particular, diffs between two backup
files, Makefiles when the port uses Imake or GNU confiqgure, etc., are unnecessary and have to be
deleted. If it was necessary to edit configure.in and run autoconf to regenerate configure, do not
take the diffs of configure (it often grows to a few thousand lines!). Instead, define USES=autoreconf
and take the diffs of configure.in.

4.4.3. Simple Automatic Replacements

Simple replacements can be performed directly from the port Makefile using the in-place mode of
sed(1). This is useful when changes use the value of a variable:

19

https://man.freebsd.org/cgi/man.cgi?query=diff&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=diff&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=diff&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=diff&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=sed&sektion=1&format=html

post-patch:
@${REINPLACE_CMD} -e 's|/usr/local|${PREFIX}|g' ${WRKSRC}/Makefile

o Only use sed(1) to replace variable content. You must use patch files instead of
sed(1) to replace static content.

Quite often, software being ported uses the CR/LF convention in source files. This may cause
problems with further patching, compiler warnings, or script execution (like /bin/sh™M not found.)
To quickly convert all files from CR/LF to just LF, add this entry to the port Makefile:

USES= dos2unix
A list of specific files to convert can be given:

USES= dos2unix
DOS2UNIX FILES= util.c util.h

Use DOS2UNIX_REGEX to convert a group of files across subdirectories. Its argument is a find(1)
-compatible regular expression. More on the format is in re_format(7). This option is useful for
converting all files of a given extension. For example, convert all source code files, leaving binary
files intact:

USES= dos2unix
DOS2UNIX_REGEX= .*\.([ch]|cpp)

A similar option is DOS2UNIX_GLOB, which runs find for each element listed in it.

USES= dos2unix
DOS2UNIX_GLOB= *.c *.cpp *.h

The base directory for the conversion can be set. This is useful when there are multiple distfiles and
several contain files which require line-ending conversion.

USES= dos2unix
DOS2UNIX_WRKSRC= ${WRKDIR}

4.4.4. Patching Conditionally

Some ports need patches that are only applied for specific FreeBSD versions or when a particular
option is enabled or disabled. Conditional patches are specified by placing the full paths to the
patch files in EXTRA_PATCHES. Conditional patch file names usually start with extra- although this is
not necessary. However, their file names must not start with patch-. If they do, they are applied

20

https://man.freebsd.org/cgi/man.cgi?query=sed&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=sed&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=find&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=re_format&sektion=7&format=html

unconditionally by the framework which is undesired for conditional patches.

Example 2. Applying a Patch for a Specific FreeBSD Version

.include <bsd.port.options.mk>

Patch in the iconv const qualifier before this
.if ${OPSYS} == FreeBSD && ${0OSVERSION} < 1100069
EXTRA_PATCHES= ${PATCHDIR}/extra-patch-fbsd10
.endif

.include <bsd.port.mk>

Example 3. Optionally Applying a Patch

When an option requires a patch, use opt_EXTRA_PATCHES and opt_EXTRA_PATCHES_OFF to make
the patch conditional on the opt option. See Generic Variables Replacement for more
information.

OPTIONS DEFINE= FOO BAR

FOO_EXTRA_PATCHES= ${PATCHDIR}/extra-patch-foo

BAR_EXTRA_PATCHES_OFF= ${PATCHDIR}/extra-patch-bar.c \
${PATCHDIR}/extra-patch-bar.h

Example 4. Using EXTRA_PATCHES With a Directory

Sometimes, there are many patches that are needed for a feature, in this case, it is possible to
point EXTRA_PATCHES to a directory, and it will automatically apply all files named patch-* in it.

Create a subdirectory in ${PATCHDIR}, and move the patches in it. For example:

% 1s -1 files/foo-patches
-rw-r--r-- 1 root wheel 350 Jan 16 01:27 patch-Makefile.in
-rw-r--r-- 1 root wheel 3084 Jan 18 15:37 patch-configure.ac

Then add this to the Makefile:

OPTIONS _DEFINE= FOO
FOO_EXTRA_PATCHES= ${PATCHDIR}/foo-patches

The framework will then use all the files named patch-* in that directory.

21

4.5. Configuring

Include any additional customization commands in the configure script and save it in the scripts
subdirectory. As mentioned above, it is also possible do this with Makefile targets and/or scripts
with the name pre-configure or post-configure.

4.6. Handling User Input

If the port requires user input to build, configure, or install, set IS_INTERACTIVE in the Makefile. This
will allow "overnight builds" to skip it. If the user sets the variable BATCH in their environment (and
if the user sets the variable INTERACTIVE, then only those ports requiring interaction are built). This
will save a lot of wasted time on the set of machines that continually build ports (see below).

It is also recommended that if there are reasonable default answers to the questions,
PACKAGE_BUILDING be used to turn off the interactive script when it is set. This will allow us to build
the packages for CDROMs and FTP.

22

Chapter 5. Configuring the Makefile

Configuring the Makefile is pretty simple, and again we suggest looking at existing examples before
starting. Also, there is a sample Makefile in this handbook, so take a look and please follow the
ordering of variables and sections in that template to make the port easier for others to read.

Consider these problems in sequence during the design of the new Makefile:

5.1. The Original Source

Does it live in DISTDIR as a standard gzipped tarball named something like foozolix-1.2.tar.gz? If so,
go on to the next step. If not, the distribution file format might require overriding one or more of
DISTVERSION, DISTNAME, EXTRACT_CMD, EXTRACT_BEFORE_ARGS, EXTRACT_AFTER_ARGS, EXTRACT_SUFX, or
DISTFILES.

In the worst case, create a custom do-extract target to override the default. This is rarely, if ever,
necessary.

5.2. Naming

The first part of the port’s Makefile names the port, describes its version number, and lists it in the
correct category.

5.2.1. PORTNAME

Set PORTNAME to the base name of the software. It is used as the base for the FreeBSD package, and
for DISTNAME.

The package name must be unique across the entire ports tree. Make sure that the
o PORTNAME is not already in use by an existing port, and that no other port already
has the same PKGBASE. If the name has already been used, add either PKGNAMEPREFIX
or PKGNAMESUFFIX.
5.2.2. Versions, DISTVERSION or PORTVERSION

Set DISTVERSION to the version number of the software.

PORTVERSION is the version used for the FreeBSD package. It will be automatically derived from
DISTVERSION to be compatible with FreeBSD’s package versioning scheme. If the version contains
letters, it might be needed to set PORTVERSION and not DISTVERSION.

o Only one of PORTVERSION and DISTVERSION can be set at a time.

From time to time, some software will use a version scheme that is not compatible with how
DISTVERSION translates in PORTVERSION.

O When updating a port, it is possible to use <a

23

href="https://man.freebsd.org/cgi/man.cgi?query=pkg-
version&sektion=8&format=html">pkg-version(8)'s <code>-t</code> argument
to check if the new version is greater or lesser than before. See Using <a
href="https://man.freebsd.org/cgi/man.cgi?query=pkg-version\&sektion=8 to
Compare Versions&format=html">pkg-version\(8] to Compare Versions).

Example 5. Using pkg-version(8) to Compare Versions

pkg version -t takes two versions as arguments, it will respond with <, = or > if the first version
is less, equal, or more than the second version, respectively.

o°
©

kg version -t 1.2 1.3

N

version -t 1.2 1.2

Ve

version -t 1.2 1.2.0

Y]

S® Il e° Il o°

version -t 1.2 1.2.p1

\Y4

o

version -t 1.2.a1 1.2.b1

N
Ya]

o

@R OZ®R @R ORO

version -t 1.2 1.2p1

N
Ya]

.2 is before 1.3.

® ©

.2and 1.2 are equal as they have the same version.

©)

.2and 1.2.0 are equal as nothing equals zero.

®

.2 is after 1.2.p1 as .p1, think "pre-release 1".

©

.2.3a11is before 1.2.b1, think "alpha" and "beta", and a is before b.

©

.2 is before 1.2p1 as 2p1, think "2, patch level 1" which is a version after any 2.X but before

W

In here, the 3, b, and p are used as if meaning "alpha", "beta" or "pre-release" and "patch
level", but they are only letters and are sorted alphabetically, so any letter can be used,
and they will be sorted appropriately.

Table 1. Examples of DISTVERSION and the Derived PORTVERSION

DISTVE PORTVERSION
RSION

0.7.1d 0.7.1.d

10Alpha 10.a3
3

24

https://man.freebsd.org/cgi/man.cgi?query=pkg-version&sektion=8&format=html

DISTVE PORTVERSION

RSION

3Beta7- 3.b7.p2
pre2

8:1 17 8f.17

Example 6. Using DISTVERSION

When the version only contains numbers separated by dots, dashes or underscores, use
DISTVERSION.

PORTNAME= nekoto
DISTVERSION= 1.2-4

It will generate a PORTVERSION of 1.2.4.

Example 7. Using DISTVERSION When the Version Starts with a Letter or a Prefix

When the version starts or ends with a letter, or a prefix or a suffix that is not part of the
version, use DISTVERSIONPREFIX, DISTVERSION, and DISTVERSIONSUFFIX.

If the version is v1.2-4:

PORTNAME= nekoto
DISTVERSIONPREFIX= v
DISTVERSION= 124

Some of the time, projects using GitHub will use their name in their versions. For example, the
version could be nekoto-1.2-4:

PORTNAME= nekoto
DISTVERSIONPREFIX= nekoto-
DISTVERSION= 1.2 4

Those projects also sometimes use some string at the end of the version, for example, 1.2-
4_RELEASE:

PORTNAME= nekoto
DISTVERSION= 1.2-4
DISTVERSIONSUFFIX= _RELEASE

Or they do both, for example, nekoto-1.2-4_RELEASE:

25

PORTNAME= nekoto
DISTVERSIONPREFIX= nekoto-
DISTVERSION= 1.2-4
DISTVERSIONSUFFIX= _RELEASE

DISTVERSIONPREFIX and DISTVERSIONSUFFIX will not be used while constructing PORTVERSION, but
only used in DISTNAME.

All will generate a PORTVERSION of 1.2.4.

Example 8. Using DISTVERSION When the Version Contains Letters Meaning "alpha", "beta", or "pre-release”
When the version contains numbers separated by dots, dashes or underscores, and letters are

used to mean "alpha", "beta" or "pre-release”, which is, before the version without the letters,
use DISTVERSION.

PORTNAME= nekoto
DISTVERSION= 1.2-pred

PORTNAME= nekoto
DISTVERSION= 1.2p4

Both will generate a PORTVERSION of 1.2.p4 which is before than 1.2. pkg-version(8) can be used
to check that fact:

% pkg version -t 1.2.p4 1.2

N

Example 9. Not Using DISTVERSION When the Version Contains Letters Meaning "Patch Level”

When the version contains letters that are not meant as "alpha”, "beta", or "pre", but more in a
"patch level”, and meaning after the version without the letters, use PORTVERSION.

PORTNAME= nekoto
PORTVERSION= 1.2p4

In this case, using DISTVERSION is not possible because it would generate a version of 1.2.p4
which would be before 1.2 and not after. pkg-version(8) will verify this:

% pkg version -t 1.2 1.2.p4

= O

%p

g version -t 1.2 1.2p4

26

https://man.freebsd.org/cgi/man.cgi?query=pkg-version&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=pkg-version&sektion=8&format=html

<@

M 1.2 is after 1.2.p4, which is wrong in this case.

@ 1.2 is before 1.2p4, which is what was needed.

For some more advanced examples of setting PORTVERSION, when the software’s versioning is really
not compatible with FreeBSD’s, or DISTNAME when the distribution file does not contain the version
itself, see DISTNAME.

5.2.3. PORTREVISION and PORTEPOCH

5.2.3.1. PORTREVISION

PORTREVISION is a monotonically increasing value which is reset to 0 with every increase of
DISTVERSION, typically every time there is a new official vendor release. If PORTREVISION is non-zero,
the value is appended to the package name. Changes to PORTREVISION are used by automated tools
like pkg-version(8) to determine that a new package is available.

PORTREVISION must be increased each time a change is made to the port that changes the generated
package in any way. That includes changes that only affect a package built with non-default options.

Examples of when PORTREVISION must be bumped:
» Addition of patches to correct security vulnerabilities, bugs, or to add new functionality to the
port.

* Changes to the port Makefile to enable or disable compile-time options in the package.

* Changes in the packing list or the install-time behavior of the package. For example, a change to
a script which generates initial data for the package, like ssh(1) host keys.

* Version bump of a port’s shared library dependency (in this case, someone trying to install the
old package after installing a newer version of the dependency will fail since it will look for the
old libfoo.x instead of libfoo.(x+1)).

« Silent changes to the port distfile which have significant functional differences. For example,
changes to the distfile requiring a correction to distinfo with no corresponding change to
DISTVERSION, where a diff -ru of the old and new versions shows non-trivial changes to the
code.

* Changes to MAINTAINER.
Examples of changes which do not require a PORTREVISION bump:
 Style changes to the port skeleton with no functional change to what appears in the resulting

package.

* Changes to MASTER_SITES or other functional changes to the port which do not affect the
resulting package.

 Trivial patches to the distfile such as correction of typos, which are not important enough that
users of the package have to go to the trouble of upgrading.

27

https://man.freebsd.org/cgi/man.cgi?query=pkg-version&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=ssh&sektion=1&format=html

* Build fixes which cause a package to become compilable where it was previously failing. As
long as the changes do not introduce any functional change on any other platforms on which
the port did previously build. Since PORTREVISION reflects the content of the package, if the
package was not previously buildable then there is no need to increase PORTREVISION to mark a
change.

A rule of thumb is to decide whether a change committed to a port is something which some people
would benefit from having. Either because of an enhancement, fix, or by virtue that the new
package will actually work at all. Then weigh that against that fact that it will cause everyone who
regularly updates their ports tree to be compelled to update. If yes, PORTREVISION must be bumped.

People using binary packages will never see the update if PORTREVISION is not
bumped. Without increasing PORTREVISION, the package builders have no way to
detect the change and thus, will not rebuild the package.

5.2.3.2. PORTEPOCH

From time to time a software vendor or FreeBSD porter will do something silly and release a
version of their software which is actually numerically less than the previous version. An example
of this is a port which goes from f00-20000801 to foo-1.0 (the former will be incorrectly treated as a
newer version since 20000801 is a numerically greater value than 1).

The results of version number comparisons are not always obvious. pkg version

(see pkg-version(8)) can be used to test the comparison of two version number
strings. For example:

O % pkg version -t 0.031 0.29

Vv

The > output indicates that version 0.031 is considered greater than version 0.29,
which may not have been obvious to the porter.

In situations such as this, PORTEPOCH must be increased. If PORTEPOCH is nonzero it is appended to the
package name as described in section 0 above. PORTEPOCH must never be decreased or reset to zero,
because that would cause comparison to a package from an earlier epoch to fail. For example, the
package would not be detected as out of date. The new version number, 1.0,1 in the above
example, is still numerically less than the previous version, 20000801, but the ,1 suffix is treated
specially by automated tools and found to be greater than the implied suffix ,0 on the earlier
package.

Dropping or resetting PORTEPOCH incorrectly leads to no end of grief. If the discussion above was not
clear enough, please consult the FreeBSD ports mailing list.

It is expected that PORTEPOCH will not be used for the majority of ports, and that sensible use of
DISTVERSION, or that use PORTVERSION carefully, can often preempt it becoming necessary if a future
release of the software changes the version structure. However, care is needed by FreeBSD porters
when a vendor release is made without an official version number - such as a code "snapshot"
release. The temptation is to label the release with the release date, which will cause problems as in

28

https://man.freebsd.org/cgi/man.cgi?query=pkg-version&sektion=8&format=html
https://lists.FreeBSD.org/subscription/freebsd-ports

the example above when a new "official" release is made.

For example, if a snapshot release is made on the date 20000917, and the previous version of the
software was version 1.2, do not use 20000917 for DISTVERSION. The correct way is a DISTVERSION of
1.2.20000917, or similar, so that the succeeding release, say 1.3, is still a numerically greater value.

5.2.3.3. Example of PORTREVISION and PORTEPOCH Usage

The gtkmumble port, version 0.10, is committed to the ports collection:

PORTNAME= gtkmumble
DISTVERSION= 0.10

PKGNAME becomes gtkmumble-0.10.

A security hole is discovered which requires a local FreeBSD patch. PORTREVISION is bumped
accordingly.

PORTNAME= gtkmumble
DISTVERSION= 0.10
PORTREVISION= 1

PKGNAME becomes gtkmumble-0.10_1

A new version is released by the vendor, numbered 0.2 (it turns out the author actually intended
0.10 to actually mean 0.1.0, not "what comes after 0.9" - oops, too late now). Since the new minor
version 2 is numerically less than the previous version 10, PORTEPOCH must be bumped to manually
force the new package to be detected as "newer". Since it is a new vendor release of the code,
PORTREVISION is reset to O (or removed from the Makefile).

PORTNAME= gtkmumble
DISTVERSION= 0.2
PORTEPOCH= 1

PKGNAME becomes gtkmumble-0.2,1

The next release is 0.3. Since PORTEPOCH never decreases, the version variables are now:

PORTNAME= gtkmumble
DISTVERSION= 0.3
PORTEPOCH= 1

PKGNAME becomes gtkmumble-0.3,1

o If PORTEPOCH were reset to @ with this upgrade, someone who had installed the
gtkmumble-0.10_1 package would not detect the gtkmumble-0.3 package as newer,

29

since 3 is still numerically less than 10. Remember, this is the whole point of
PORTEPOCH in the first place.

5.2.4. PKGNAMEPREFIX and PKGNAMESUFFIX

Two optional variables, PKGNAMEPREFIX and PKGNAMESUFFIX, are combined with PORTNAME and
PORTVERSION to form PKGNAME as ${PKGNAMEPREFIX}${PORTNAME}${PKGNAMESUFFIX}-${PORTVERSION}. Make
sure this conforms to our guidelines for a good package name. In particular, the use of a hyphen (-)
in PORTVERSION is not allowed. Also, if the package name has the language- or the -compiled.specifics
part (see below), use PKGNAMEPREFIX and PKGNAMESUFFIX, respectively. Do not make them part of
PORTNAME.

5.2.5. Package Naming Conventions

These are the conventions to follow when naming packages. This is to make the package directory
easy to scan, as there are already thousands of packages and users are going to turn away if they
hurt their eyes!

Package names take the form of language_region-name-compiled.specifics-version.numbers.

The package name is defined as ${PKGNAMEPREFIX}${PORTNAME}${PKGNAMESUFFIX}-${PORTVERSION}. Make
sure to set the variables to conform to that format.

language_region-
FreeBSD strives to support the native language of its users. The language- part is a two letter
abbreviation of the natural language defined by ISO-639 when the port is specific to a certain
language. Examples are ja for Japanese, ru for Russian, vi for Vietnamese, zh for Chinese, ko for
Korean and de for German.

If the port is specific to a certain region within the language area, add the two letter country
code as well. Examples are en_US for US English and fr_CH for Swiss French.

The language- part is set in PKGNAMEPREFIX.

name

Make sure that the port’s name and version are clearly separated and placed into PORTNAME and
DISTVERSION. The only reason for PORTNAME to contain a version part is if the upstream distribution
is really named that way, as in the textproc/libxml2 or japanese/kinput2-freewnn ports.
Otherwise, PORTNAME cannot contain any version-specific information. It is quite normal for
several ports to have the same PORTNAME, as the www/apache™ ports do; in that case, different
versions (and different index entries) are distinguished by PKGNAMEPREFIX and PKGNAMESUFFIX
values.

There is a tradition of naming Perl 5 modules by prepending p5- and converting the double-
colon separator to a hyphen. For example, the Data: :Dumper module becomes p5-Data-Dumper.

-compiled.specifics

If the port can be built with different hardcoded defaults (usually part of the directory name in a
family of ports), the -compiled.specifics part states the compiled-in defaults. The hyphen is

30

https://cgit.freebsd.org/ports/tree/textproc/libxml2/
https://cgit.freebsd.org/ports/tree/japanese/kinput2-freewnn/
https://cgit.freebsd.org/ports/tree/www/apache*/

optional. Examples are paper size and font units.
The -compiled.specifics part is set in PKGNAMESUFFIX.

-version.numbers

The version string follows a dash (-) and is a period-separated list of integers and single
lowercase alphabetics. In particular, it is not permissible to have another dash inside the version
string. The only exception is the string pl (meaning "patchlevel”), which can be used only when
there are no major and minor version numbers in the software. If the software version has
strings like "alpha", "beta", "rc", or "pre", take the first letter and put it immediately after a
period. If the version string continues after those names, the numbers follow the single alphabet
without an extra period between them (for example, 1.0b2).

The idea is to make it easier to sort ports by looking at the version string. In particular, make
sure version number components are always delimited by a period, and if the date is part of the
string, use the dyyyy.mm.dd format, not dd.mm.yyyy or the non-Y2K compliant yy.mm.dd format. It is
important to prefix the version with a letter, here d (for date), in case a release with an actual
version number is made, which would be numerically less than yyyy.

Package name must be unique among all of the ports tree, check that there is not
already a port with the same PORTNAME and if there is add one of PKGNAMEPREFIX or
PKGNAMESUFFIX.

Here are some (real) examples on how to convert the name as called by the software authors to a
suitable package name, for each line, only one of DISTVERSION or PORTVERSION is set in, depending on
which would be used in the port’s Makefile:

Table 2. Package Naming Examples

Distribution PKGNAMEP PORTNAME PKGNAMES DISTVERSIO PORTVERSI Reason or
Name REFIX UFFIX N ON comment

mule-2.2.2 (empty) mule (empty) 2.2.2 No changes
required

mule-1.0.1 (empty) mule 1 1.0.1 This is
version 1 of
mule, and
version 2
already
exists

EmiClock- (empty) emiclock (empty) 1.0.2 No

1.0.2 uppercase
names for
single
programs

rdist- (empty) rdist (empty) 1.3alpha Version will
1.3alpha be1.3.a

31

Distribution PKGNAMEP PORTNAME PKGNAMES DISTVERSIO PORTVERSI Reason or
Name REFIX UFFIX N ON comment

es-0.9-betal (empty) es (empty) 0.9-betal Version will
be 0.9.b1

mailman- (empty) mailman (empty) 2.0rc3 Version will
2.0rc3 be2.0.r3

v3.3beta021. (empty) tiff (empty) 3.3 What the

src heck was
that
anyway?

tvtwm (empty) tvtwm (empty) pl1 No version
in the
filename,
use what
upstream
says it is

piewm (empty) piewm (empty) 1.0 No version
in the
filename,
use what
upstream
says it is

xvgr-2.10pll (empty) XVgr (empty) 2.10.pl1 In that case,
pl1 means
patch level,
SO using
DISTVERSIO
N is not
possible.

gawk-2.15.6 ja- gawk (empty) 2.15.6 Japanese
language
version

psutils-1.13 (empty) psutils -letter 1.13 Paper size
hardcoded at
package
build time

pkfonts (empty) pkfonts 300 1.0 Package for
300dpi fonts

If there is absolutely no trace of version information in the original source and it is unlikely that the
original author will ever release another version, just set the version string to 1.0 (like the piewm
example above). Otherwise, ask the original author or use the date string the source file was
released on (dyyyy.mm.dd, or dyyyymmdd) as the version.

32

Use any letter. Here, d here stands for date, if the source is a Git repository, g
(;) followed by the commit date is commonly used, using s for snapshot is also

-
commeon.

5.3. Categorization

5.3.1. CATEGORIES

When a package is created, it is put under /usr/ports/packages/All and links are made from one or
more subdirectories of /usr/ports/packages. The names of these subdirectories are specified by the
variable CATEGORIES. It is intended to make life easier for the user when he is wading through the
pile of packages on the FTP site or the CDROM. Please take a look at the current list of categories
and pick the ones that are suitable for the port.

This list also determines where in the ports tree the port is imported. If there is more than one
category here, the port files must be put in the subdirectory with the name of the first category. See
below for more discussion about how to pick the right categories.

5.3.2. Current List of Categories

Here is the current list of port categories. Those marked with an asterisk (*) are virtual categories-
those that do not have a corresponding subdirectory in the ports tree. They are only used as
secondary categories, and only for search purposes.
o For non-virtual categories, there is a one-line description in COMMENT in that
subdirectory’s Makefile.

Category Description Notes
accessibility Ports to help disabled users.
afterstep* Ports to support the AfterStep
window manager.
arabic Arabic language support.
archivers Archiving tools.
astro Astronomical ports.
audio Sound support.
benchmarks Benchmarking utilities.
biology Biology-related software.
cad Computer aided design tools.
chinese Chinese language support.
comms Communication software. Mostly software to talk to the
serial port.
converters Character code converters.

33

http://www.afterstep.org/

Category
databases

deskutils

devel

dns

docs*

editors

education*

elisp*

emulators

enlightenment*

finance

french

34

Description
Databases.

Things that used to be on the
desktop before computers were
invented.

Development utilities.

DNS-related software.

Meta-ports for FreeBSD
documentation.

General editors.

Education-related software.

Emacs-lisp ports.

Emulators for other operating
systems.

Ports related to the
Enlightenment window
manager.

Monetary, financial and related
applications.

French language support.

Notes

Do not put libraries here just
because they are libraries. They
should not be in this category
unless they truly do not belong
anywhere else.

Specialized editors go in the
section for those tools. For
example, a mathematical-
formula editor will go in math,
and have editors as a second
category.

This includes applications,
utilities, or games primarily or
substantially designed to help
the user learn a specific topic or
study in general. It also includes
course-writing applications,
course-delivery applications,
and classroom or school
management applications

Terminal emulators do not
belong here. X-based ones go to
x11 and text-based ones to
either comms or misc,
depending on the exact
functionality.

Category
ftp

games
geography*
german
gnome*

gnustep*

graphics
hamradio*

haskell*

hebrew
hungarian
irc
japanese

java

kde*

kde-applications*

kde-frameworks*

kde-plasma*
kld*

korean

lang

linux*

Description Notes

FTP client and server utilities. If the port speaks both FTP and
HTTP, put it in ftp with a
secondary category of www.

Games.

Geography-related software.
German language support.
Ports from the GNOME Project.

Software related to the GNUstep
desktop environment.

Graphics utilities.
Software for amateur radio.

Software related to the Haskell
language.

Hebrew language support.
Hungarian language support.
Internet Relay Chat utilities.
Japanese language support.

Software related to the Java™ The java category must not be

language. the only one for a port. Save for
ports directly related to the Java
language, porters are also
encouraged not to use java as
the main category of a port.

Ports from the KDE Project
(generic).

Applications from the KDE
Project.

Add-on libraries from the KDE
Project for programming with

Qt.
Desktop from the KDE Project.

Kernel loadable modules.
Korean language support.
Programming languages.

Linux applications and support
utilities.

35

https://www.gnome.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/

Category
lisp*

mail

mate*

math

mbone*

misc

multimedia

net

net-im

net-mgmt

net-p2p

net-vpn*

news

parallel*

pear*

perl5*

plan9*
polish

ports-mgmt

portuguese

36

Description Notes

Software related to the Lisp
language.

Mail software.

Ports related to the MATE
desktop environment, a fork of
GNOME 2.

Numerical computation
software and other utilities for
mathematics.

MBone applications.

Miscellaneous utilities Things that do not belong
anywhere else. If at all possible,
try to find a better category for
the port than misc, as ports tend
to be overlooked in here.

Multimedia software.

Miscellaneous networking
software.

Instant messaging software.

Networking management
software.

Peer to peer network
applications.

Virtual Private Network
applications.

USENET news software.

Applications dealing with
parallelism in computing.

Ports related to the Pear PHP
framework.

Ports that require Perl version 5
to run.

Various programs from Plan9.
Polish language support.

Ports for managing, installing
and developing FreeBSD ports
and packages.

Portuguese language support.

https://9p.io/wiki/plan9/Download/index.html

Category

print

python*

ruby*

rubygems*
russian

scheme*

science

security
shells
spanish*
sysutils
tel*

textproc

tk*
ukrainian
vietnamese

wayland*

windowmaker*

x11

x11-clocks

Description

Printing software.

Software related to the Python
language.

Software related to the Ruby
language.

Ports of RubyGems packages.

Russian language support.

Software related to the Scheme

language.

Scientific ports that do not fit
into other categories such as
astro, biology and math.

Security utilities.
Command line shells.
Spanish language support.
System utilities.

Ports that use Tcl to run.

Text processing utilities.

Ports that use Tk to run.
Ukrainian language support.
Vietnamese language support.

Ports to support the Wayland
display server.

Ports to support the Window
Maker window manager.

Software related to the World
Wide Web.

The X Window System and
friends.

X11 clocks.

Notes

Desktop publishing tools
(previewers, etc.) belong here
too.

It does not include desktop
publishing tools, which go to
print.

HTML language support
belongs here too.

This category is only for
software that directly supports
the window system. Do not put
regular X applications here.
Most of them go into other x11-
* categories (see below).

37

https://www.python.org/
https://www.ruby-lang.org/
https://www.rubygems.org/

Category

x11-drivers

x11-fm X11 file managers.
x11-fonts X11 fonts and font utilities.
x11-servers X11 servers.

x11-themes X11 themes.

x11-toolkits X11 toolKkits.

Description

X11 drivers.

x11-wm X11 window managers.
xfce* Ports related to the Xfce

desktop environment.
zope* Zope support.

5.3.3. Choosing the Right Category

Notes

As many of the categories overlap, choosing which of the categories will be the primary category of
the port can be tedious. There are several rules that govern this issue. Here is the list of priorities, in
decreasing order of precedence:

The first category must be a physical category (see above). This is necessary to make the
packaging work. Virtual categories and physical categories may be intermixed after that.

Language specific categories always come first. For example, if the port installs Japanese X11
fonts, then the CATEGORIES line would read japanese x11-fonts.

Specific categories are listed before less-specific ones. For instance, an HTML editor is listed as
www editors, not the other way around. Also, do not list net when the port belongs to any of irc,
mail, news, security, or www, as net is included implicitly.

x11 is used as a secondary category only when the primary category is a natural language. In
particular, do not put x11 in the category line for X applications.

Emacs modes are placed in the same ports category as the application supported by the mode,
not in editors. For example, an Emacs mode to edit source files of some programming language
goes into lang.

Ports installing loadable kernel modules also have the virtual category kld in their CATEGORIES
line. This is one of the things handled automatically by adding USES=kmod.

misc does not appear with any other non-virtual category. If there is misc with something else in
CATEGORIES, that means misc can safely be deleted and the port placed only in the other
subdirectory.

If the port truly does not belong anywhere else, put it in misc.

If the category is not clearly defined, please put a comment to that effect in the port submission in
the bug database so we can discuss it before we import it. As a committer, send a note to the
FreeBSD ports mailing list so we can discuss it first. Too often, new ports are imported to the wrong
category only to be moved right away.

https://www.xfce.org/
https://www.zope.org/
https://bugs.freebsd.org/submit/
https://lists.FreeBSD.org/subscription/freebsd-ports

5.3.4. Proposing a New Category

As the Ports Collection has grown over time, various new categories have been introduced. New
categories can either be virtual categories-those that do not have a corresponding subdirectory in
the ports tree- or physical categories-those that do. This section discusses the issues involved in
creating a new physical category. Read it thoroughly before proposing a new one.

Our existing practice has been to avoid creating a new physical category unless either a large
number of ports would logically belong to it, or the ports that would belong to it are a logically
distinct group that is of limited general interest (for instance, categories related to spoken human
languages), or preferably both.

The rationale for this is that such a change creates a fair amount of work for both the committers
and also for all users who track changes to the Ports Collection. In addition, proposed category
changes just naturally seem to attract controversy. (Perhaps this is because there is no clear
consensus on when a category is "too big", nor whether categories should lend themselves to
browsing (and thus what number of categories would be an ideal number), and so forth.)

Here is the procedure:

1. Propose the new category on FreeBSD ports mailing list. Include a detailed rationale for the new
category, including why the existing categories are not sufficient, and the list of existing ports
proposed to move. (If there are new ports pending in Bugzilla that would fit this category, list
them too.) If you are the maintainer and/or submitter, respectively, mention that as it may help
the case.

2. Participate in the discussion.

3. If it seems that there is support for the idea, file a PR which includes both the rationale and the
list of existing ports that need to be moved. Ideally, this PR would also include these patches:

- Makefiles for the new ports once they are repocopied

o Makefile for the new category

o

Makefile for the old ports' categories
o Makefiles for ports that depend on the old ports

o (for extra credit, include the other files that have to change, as per the procedure in the
Committer’s Guide.)

4. Since it affects the ports infrastructure and involves moving and patching many ports but also
possibly running regression tests on the build cluster, assign the PR to the Ports Management
Team <portmgr@FreeBSD.org>.

5. If that PR is approved, a committer will need to follow the rest of the procedure that is outlined

in the Committer’s Guide.

Proposing a new virtual category is similar to the above but much less involved, since no ports will
actually have to move. In this case, the only patches to include in the PR would be those to add the
new category to CATEGORIES of the affected ports.

39

https://docs.freebsd.org/en/articles/committers-guide/#ports
https://lists.FreeBSD.org/subscription/freebsd-ports
mailto:portmgr@FreeBSD.org
https://docs.freebsd.org/en/articles/committers-guide/#ports
https://docs.freebsd.org/en/articles/committers-guide/#ports

5.3.5. Proposing Reorganizing All the Categories

Occasionally someone proposes reorganizing the categories with either a 2-level structure, or some
other kind of keyword structure. To date, nothing has come of any of these proposals because,
while they are very easy to make, the effort involved to retrofit the entire existing ports collection
with any kind of reorganization is daunting to say the very least. Please read the history of these
proposals in the mailing list archives before posting this idea. Furthermore, be prepared to be
challenged to offer a working prototype.

5.4. The Distribution Files

The second part of the Makefile describes the files that must be downloaded to build the port, and
where they can be downloaded.

5.4.1. DISTNAME

DISTNAME is the name of the port as called by the authors of the software. DISTNAME defaults to
${PORTNAME}-${DISTVERSIONPREFIX}${DISTVERSION}${DISTVERSIONSUFFIX}, and if not set, DISTVERSION
defaults to ${PORTVERSION} so override DISTNAME only if necessary. DISTNAME is only used in two places.
First, the distribution file list (DISTFILES) defaults to ${DISTNAME}${EXTRACT_SUFX}. Second, the
distribution file is expected to extract into a subdirectory named WRKSRC, which defaults to
work/${DISTNAME}.

Some vendor’s distribution names which do not fit into the ${PORTNAME}-${PORTVERSION}-scheme can
be handled automatically by setting DISTVERSIONPREFIX, DISTVERSION, and DISTVERSIONSUFFIX.
PORTVERSION will be derived from DISTVERSION automatically.

o Only one of PORTVERSION and DISTVERSION can be set at a time. If DISTVERSION does
not derive a correct PORTVERSION, do not use DISTVERSION.

If the upstream version scheme can be derived into a ports-compatible version scheme, set some
variable to the upstream version, do not use DISTVERSION as the variable name. Set PORTVERSION to
the computed version based on the variable you created, and set DISTNAME accordingly.

If the upstream version scheme cannot easily be coerced into a ports-compatible value, set
PORTVERSION to a sensible value, and set DISTNAME with PORTNAME with the verbatim upstream version.

Example 10. Deriving PORTVERSION Manually

BIND9 uses a version scheme that is not compatible with the ports versions (it has - in its
versions) and cannot be derived using DISTVERSION because after the 9.9.9 release, it will
release a "patchlevels" in the form of 9.9.9-P1. DISTVERSION would translate that into
9.9.9.p1, which, in the ports versioning scheme means 9.9.9 pre-release 1, which is before 9.9.9
and not after. So PORTVERSION is manually derived from an ISCVERSION variable to output
9.9.9p1.

The order into which the ports framework, and pkg, will sort versions is checked using the -t
argument of pkg-version(8):

40

https://man.freebsd.org/cgi/man.cgi?query=pkg-version&sektion=8&format=html

% pkg version -t 9.9.9 9.9.9.p1

0]
% pkg version -t 9.9.9 9.9.9p1

@

Vv

N

@ The > sign means that the first argument passed to -t is greater than the second argument.
9.9.9is after 9.9.9.p1.

@ The < sign means that the first argument passed to -t is less than the second argument.
9.9.9is before 9.9.9p1.

In the port Makefile, for example dns/bind99, it is achieved by:

PORTNAME= bind

PORTVERSION= ${ISCVERSION:S/-P/P/:S/b/.b/:S/a/.a/:S/rc/.rc/}
CATEGORIES= dns net

MASTER_SITES= ISC/bind9/${ISCVERSION}

PKGNAMESUFFIX= 99

DISTNAME= ${PORTNAME}-${ISCVERSION}

MAINTAINER= mat@FreeBSD.org
COMMENT= BIND DNS suite with updated DNSSEC and DNS64
Www= https://www.isc.org/bind/

LICENSE= ISCL

ISC releases things like 9.8.0-P1 or 9.8.1rc1, which our versioning does not
like
ISCVERSION= 9.9.9-P6

Define upstream version in ISCVERSION, with a comment saying why it is needed. Use ISCVERSION
to get a ports-compatible PORTVERSION. Use ISCVERSION directly to get the correct URL for
fetching the distribution file. Use ISCVERSION directly to name the distribution file.

Example 11. Derive DISTNAME from PORTVERSION

From time to time, the distribution file name has little or no relation to the version of the
software.

In comms/kermit, only the last element of the version is present in the distribution file:

PORTNAME= kermit

PORTVERSION= 9.0.304

CATEGORIES= comms ftp net

MASTER_SITES= ftp://ftp.kermitproject.org/kermit/test/tar/
DISTNAME= cku${PORTVERSION:E}-dev20

41

https://cgit.freebsd.org/ports/tree/dns/bind99/
https://cgit.freebsd.org/ports/tree/comms/kermit/

The :E make(1) modifier returns the suffix of the variable, in this case, 304. The distribution file
is correctly generated as cku304-dev20.tar.gz.

Example 12. Exotic Case 1

Sometimes, there is no relation between the software name, its version, and the distribution
file it is distributed in.

From audio/libworkman:

PORTNAME= 1ibworkman
PORTVERSION= 1.4

CATEGORIES= audio

MASTER_SITES= LOCAL/jim

DISTNAME= ${PORTNAME}-1999-06-20

Example 13. Exotic Case 2

In comms/librs232, the distribution file is not versioned, so using DIST_SUBDIR is needed:

PORTNAME= librs232

PORTVERSION= 20160710

CATEGORIES= comms

MASTER_SITES= http://www.teuniz.net/RS-232/
DISTNAME= RS-232

DIST_SUBDIR= ${PORTNAME}-${PORTVERSION}

PKGNAMEPREFIX and PKGNAMESUFFIX do not affect DISTNAME. Also note that if WRKSRC is
equal to ${WRKDIR}/${DISTNAME} while the original source archive is named

o something other than ${PORTNAME}-${PORTVERSION}${EXTRACT_SUFX}, leave DISTNAME
alone- defining only DISTFILES is easier than both DISTNAME and WRKSRC (and
possibly EXTRACT _SUFX).

5.4.2. MASTER_SITES

Record the directory part of the FTP/HTTP-URL pointing at the original tarball in MASTER_SITES. Do
not forget the trailing slash (/)!

The make macros will try to use this specification for grabbing the distribution file with FETCH if they
cannot find it already on the system.

It is recommended that multiple sites are included on this list, preferably from different continents.
This will safeguard against wide-area network problems.

o MASTER_SITES must not be blank. It must point to the actual site hosting the

42

https://man.freebsd.org/cgi/man.cgi?query=make&sektion=1&format=html
https://cgit.freebsd.org/ports/tree/audio/libworkman/
https://cgit.freebsd.org/ports/tree/comms/librs232/

distribution files. It cannot point to web archives, or the FreeBSD distribution files
cache sites. The only exception to this rule is ports that do not have any
distribution files. For example, meta-ports do not have any distribution files, so
MASTER_SITES does not need to be set.

5.4.2.1. Using MASTER_SITE_* Variables

Shortcut abbreviations are available for popular archives like SourceForge (SOURCEFORGE), GNU (GNU),
or Perl CPAN (PERL_CPAN). MASTER_SITES can use them directly:

MASTER_SITES= GNU/make

The older expanded format still works, but all ports have been converted to the compact format.
The expanded format looks like this:

MASTER_SITES= ${MASTER_SITE_GNU}
MASTER_SITE_SUBDIR= make

These values and variables are defined in Mk/bsd.sites.mk. New entries are added often, so make
sure to check the latest version of this file before submitting a port.

For any MASTER_SITE_FO00 variable, the shorthand FOO can be used. For example, use:

MASTER_SITES= FOO

@,

- If MASTER_SITE SUBDIR is needed, use this:
MASTER_SITES= FOO/bar

Some MASTER_SITE_* names are quite long, and for ease of use, shortcuts have been
defined:
Table 3. Shortcuts for MASTER_SITE_* Macros
Macro Shortcut
PERL_CPAN CPAN

o GITHUB GH
GITHUB_CLOUD GHC
LIBREOFFICE DEV LODEV
NETLIB NL
RUBYGEMS RG
SOURCEFORGE SF

43

https://cgit.freebsd.org/ports/tree/Mk/bsd.sites.mk

5.4.2.2. Magic MASTER_SITES Macros

Several "magic" macros exist for popular sites with a predictable directory structure. For these, just
use the abbreviation and the system will choose a subdirectory automatically. For a port named
Stardict, of version 1.2.3, and hosted on SourceForge, adding this line:

MASTER_SITES= SF

infers a subdirectory named /project/stardict/stardict/1.2.3. If the inferred directory is
incorrect, it can be overridden:

MASTER_SITES= SF/stardict/WyabdcRealPeopleTTS/${PORTVERSION}

This can also be written as

MASTER_SITES= SF
MASTER_SITE_SUBDIR= stardict/WyabdcRealPeopleTTS/${PORTVERSION}

Table 4. Magic MASTER_SITES Macros

Macro Assumed subdirectory

APACHE_COMMONS_BINARIES ${PORTNAME:S, commons-, , }

APACHE_COMMONS_SOURCE ${PORTNAME: S, commons-, , }

APACHE _JAKARTA ${PORTNAME:S,-,/,}/source

BERLIOS ${PORTNAME: t1}.berlios

CHEESESHOP source/${DISTNAME:C/(.).*/\1/}/${DISTNAME:C/(.
)-[0-9]./\1/}

CPAN ${PORTNAME:C/-.*//}

DEBIAN pool/main/${PORTNAME:C/A((1ib)?.).*$/\1/}/${PO
RTNAME}

FARSIGHT ${PORTNAME}

FESTIVAL ${PORTREVISION}

Gee releases/${DISTNAME}

GENTOO distfiles

GIMP ${PORTNAME}/${PORTVERSION:R}/

GH ${GH_ACCOUNT}/${GH_PROJECT}/tar.gz/${GH_TAGNAM
E}?dummy=/

GHC ${GH_ACCOUNT}/${GH_PROJECT}/

GNOME sources/${PORTNAME}/${PORTVERSION:C/A(\.[0-
91).*/\1/}

GNU ${PORTNAME}

GNUPG ${PORTNAME}

GNU_ALPHA ${PORTNAME}

44

Macro Assumed subdirectory

HORDE ${PORTNAME}

LODEV ${PORTNAME}

MATE ${PORTVERSION:C/A(\.[0-9]).*/\1/}

MOZDEV ${PORTNAME: t1}

NL ${PORTNAME}

Qr archive/qt/${PORTVERSION:R}

SAMBA ${PORTNAME}

SAVANNAH ${PORTNAME: t1}

SF ${PORTNAME: t1}/${PORTNAME : t1}/${PORTVERSION}

5.4.3. USE_GITHUB

If the distribution file comes from a specific commit or tag on GitHub for which there is no officially
released file, there is an easy way to set the right DISTNAME and MASTER_SITES automatically.

As of 2023-02-21 GitHub have announced that source downloads will be stable for

A a year. Please switch to release assets and if not available ask upstream to generate
ones.

These variables are available:

Table 5. USE_GITHUB Description

Variable Description Default
GH_ACCOUNT Account name of the GitHub ${PORTNAME}
user hosting the project
GH_PROJECT Name of the project on GitHub ${PORTNAME}
GH_TAGNANE Name of the tag to download ~ ${DISTVERSIONPREFIX}${DISTVERS

(2.0.1, hash, ...) Using the name TON}${DISTVERSIONSUFFIX}

of a branch here is incorrect. It
is also possible to use the hash
of a commit id to do a snapshot.

GH_SUBDIR When the software needs an (none)
additional distribution file to be
extracted within ${WRKSRC}, this
variable can be used. See the
examples in Fetching Multiple
Files from GitHub for more
information.

45

https://github.com/
https://github.blog/2023-02-21-update-on-the-future-stability-of-source-code-archives-and-hashes/

Variable Description Default

GH_TUPLE GH_TUPLE allows putting
GH_ACCOUNT, GH_PROJECT,
GH_TAGNAME, and GH_SUBDIR into a
single variable. The format is
account : project : tagname :"
group | subdir. The */ subdir
part is optional. It is helpful
when there is more than one
GitHub project from which to
fetch.

o Do not use GH_TUPLE for the default distribution file, as it has no default.
Example 14. Simple Use of USE_GITHUB

While trying to make a port for version 1.2.7 of pkg from the FreeBSD user on github, at
https://github.com/freebsd/pkg/, The Makefile would end up looking like this (slightly stripped
for the example):

PORTNAME= pkg
DISTVERSION= 1.2.7

USE_GITHUB= yes
GH_ACCOUNT= freebsd

It will automatically have MASTER_SITES set to GH and WRKSRC to ${WRKDIR}/pkg-1.2.7.

Example 15. More Complete Use of USE_GITHUB

While trying to make a port for the bleeding edge version of pkg from the FreeBSD user on
github, at https:/github.com/freebsd/pkg/, the Makefile ends up looking like this (slightly
stripped for the example):

PORTNAME= pkg-devel
DISTVERSION= 1.3.0.3.20140411

USE_GITHUB= vyes
GH_ACCOUNT= freebsd
GH_PROJECT= pkg
GH_TAGNAME= 6dbb17b

It will automatically have MASTER_SITES set to GH and WRKSRC to ${WRKDIR}/pkg-6dbb17b.

20140411 is the date of the commit referenced in GH TAGNAME, not the date the Makefile is

46

https://github.com/freebsd/pkg/
https://github.com/freebsd/pkg/

edited, or the date the commit is made.

Example 16. Use of USE_GITHUB with DISTVERSIONPREFIX

From time to time, GH_TAGNAME is a slight variation from DISTVERSION. For example, if the version
is 1.0.2, the tag is v1.0.2. In those cases, it is possible to use DISTVERSIONPREFIX or
DISTVERSIONSUFFIX:

PORTNAME= foo
DISTVERSIONPREFIX= v
DISTVERSION= 1.0.2

USE_GITHUB= yes

It will automatically set GH_TAGNAME to v1.0.2, while WRKSRC will be kept to ${WRKDIR}/foo-1.0.2.

Example 17. Using USE_GITHUB When Upstream Does Not Use Versions

If there never was a version upstream, do not invent one like 0.1 or 1.0. Create the port with a
DISTVERSION of gYYYYMMDD, where g is for Git, and YYYYMMDD represents the date the commit
referenced in GH_TAGNAME.

PORTNAME= bar
DISTVERSION= 920140411

USE_GITHUB= yes
GH_TAGNAME= c472d66b

This creates a versioning scheme that increases over time, and that is still before version
<code>0</code> (see Using <a
href="https://man.freebsd.org/cgi/man.cgi?query=pkg-version\&sektion=8 to Compare
Versions&format=html">pkg-version\(8] to Compare Versions) for details on pkg-
version(8)):

% pkg version -t 920140411 0

N

Which means using PORTEPOCH will not be needed in case upstream decides to cut versions in
the future.

Example 18. Using USE_GITHUB to Access a Commit Between Two Versions

48

If the current version of the software uses a Git tag, and the port needs to be updated to a
newer, intermediate version, without a tag, use git-describe(1) to find out the version to use:

% git describe --tags f0038b1
v0.7.3-14-gf0038b1

v0.7.3-14-gf0038b1 can be split into three parts:

v0.7.3

This is the last Git tag that appears in the commit history before the requested commit.

-14
This means that the requested commit, f8038b1, is the 14th commit after the v0.7.3 tag.

-gf0038b1
The -g means "Git", and the f0038b1 is the commit hash that this reference points to.

PORTNAME= bar
DISTVERSIONPREFIX= v
DISTVERSION= 0.7.3-14
DISTVERSIONSUFFIX= -gf0038b1

USE_GITHUB= yes

This creates a versioning scheme that increases over time (well, over commits), and does not
conflict with the creation of a <code>0.7.4</code> version. (See <a anchor="makefile-versions-
ex-pkg-version">Using <a href="https://man.freebsd.org/cgi/man.cgi?query=pkg-
version\&sektion=8 to Compare Versions&format=html">pkg-version\(8] to Compare
Versions) for details on <a href="https://man.freebsd.org/cgi/man.cgi?query=pkg-
version&sektion=8&format=html">pkg-version(8)):

o

pkg version -t 0.7.3 0.7.3.14

N

o

pkg version -t 0.7.3.14 0.7.4

N

If the requested commit is the same as a tag, a shorter description is shown by default.
The longer version is equivalent:

% git describe --tags c66c71d
v0.7.3

% git describe --tags --long cb6c71d

https://man.freebsd.org/cgi/man.cgi?query=git-describe&sektion=1&format=html

v@.7.3-0-gcbbc71d

5.4.3.1. Fetching Multiple Files from GitHub

The USE_GITHUB framework also supports fetching multiple distribution files from different places in
GitHub. It works in a way very similar to Multiple Distribution or Patches Files from Multiple
Locations.

Multiple values are added to GH_ACCOUNT, GH_PROJECT, and GH_TAGNAME. Each different value is assigned
a group. The main value can either have no group, or the :DEFAULT group. A value can be omitted if
it is the same as the default as listed in USE_GITHUB Description.

GH_TUPLE can also be used when there are a lot of distribution files. It helps keep the account,
project, tagname, and group information at the same place.

For each group, a ${WRKSRC_group} helper variable is created, containing the directory into which
the file has been extracted. The ${WRKSRC_group} variables can be used to move directories around
during post-extract, or add to CONFIGURE_ARGS, or whatever is needed so that the software builds
correctly.

o The :group part must be used for only one distribution file. It is used as a unique
key and using it more than once will overwrite the previous values.

As this is only syntactic sugar above DISTFILES and MASTER_SITES, the group names
o must adhere to the restrictions on group names outlined in Multiple Distribution
or Patches Files from Multiple Locations

When fetching multiple files from GitHub, sometimes the default distribution file is not fetched
from GitHub. To disable fetching the default distribution, set:

USE_GITHUB= nodefault

When using USE_GITHUB=nodefault, the Makefile must set DISTFILES in its top block.
The definition should be:

DISTFILES= ${DISTNAME }${EXTRACT _SUFX}

Example 19. Use of USE_GITHUB with Multiple Distribution Files

From time to time, there is a need to fetch more than one distribution file. For example, when
the upstream git repository uses submodules. This can be done easily using groups in the GH_*
variables:

PORTNAME= foo

49

DISTVERSION= 1.0.2

USE_GITHUB= yes

GH_ACCOUNT= bar:icons,contrib

GH _PROJECT= foo-icons:icons foo-contrib:contrib
GH_TAGNAME= 1.0:1icons fa579bc:contrib
GH_SUBDIR= ext/icons:icons

CONFIGURE ARGS= --with-contrib=${WRKSRC contrib}

This will fetch three distribution files from github. The default one comes from foo/foo and is
version 1.0.2. The second one, with the icons group, comes from bar/foo-icons and is in
version 1.0. The third one comes from bar/foo-contrib and uses the Git commit fa579bc. The
distribution files are named foo-foo-1.0.2_GHO.tar.gz, bar-foo-icons-1.0_GHO.tar.gz, and bar-foo-
contrib-fa579bc_GHO.tar.gz.

All the distribution files are extracted in ${WRKDIR} in their respective subdirectories. The
default file is still extracted in ${WRKSRC}, in this case, ${WRKDIR}/foo-1.0.2. Each additional
distribution file is extracted in ${WRKSRC_group}. Here, for the icons group, it is called
${WRKSRC_icons} and it contains ${WRKDIR}/foo-icons-1.0. The file with the contrib group is
called ${WRKSRC_contrib} and contains ${WRKDIR}/foo-contrib-fa579bc.

The software’s build system expects to find the icons in a ext/icons subdirectory in its sources,
so GH_SUBDIR is used. GH_SUBDIR makes sure that ext exists, but that ext/icons does not already
exist. Then it does this:

post-extract:
@${MV} ${WRKSRC icons} ${WRKSRC}/ext/icons

Example 20. Use of USE_GITHUB with Multiple Distribution Files Using GH_TUPLE

50

This is functionally equivalent to Use of USE_GITHUB with Multiple Distribution Files, but using
GH_TUPLE:

PORTNAME= foo
DISTVERSION= 1.0.2

USE_GITHUB= yes
GH_TUPLE= bar:foo-icons:1.0:icons/ext/icons \

bar:foo-contrib:fa579bc:contrib

CONFIGURE_ARGS= --with-contrib=${WRKSRC_contrib}

Grouping was used in the previous example with bar:icons,contrib. Some redundant
information is present with GH_TUPLE because grouping is not possible.

Example 21. How to Use USE_GITHUB with Git Submodules?

Ports with GitHub as an upstream repository sometimes use submodules. See git-submodule(1)
for more information.

The problem with submodules is that each is a separate repository. As such, they each must be
fetched separately.

Using finance/moneymanagerex as an example, its GitHub repository is https://github.com/
moneymanagerex/moneymanagerex/. It has a .gitmodules file at the root. This file describes all
the submodules used in this repository, and lists additional repositories needed. This file will
tell what additional repositories are needed:

[submodule "lib/wxsqlite3"]

path = lib/wxsqlite3

url = https://github.com/utelle/wxsqlite3.qgit
[submodule "3rd/mongoose"]

path = 3rd/mongoose

url = https://github.com/cesanta/mongoose.qgit
[submodule "3rd/LuaGlue"]

path = 3rd/LuaGlue

url = https://github.com/moneymanagerex/LuaGlue.qgit
[submodule "3rd/cgitemplate”]

path = 3rd/cqitemplate

url = https://github.com/moneymanagerex/html-template.git
[...]

The only information missing from that file is the commit hash or tag to use as a version. This
information is found after cloning the repository:

% git clone --recurse-submodules
https://qgithub.com/moneymanagerex/moneymanagerex.git

Cloning into 'moneymanagerex’...

remote: Counting objects: 32387, done.

[...]

Submodule '3rd/LuaGlue’ (https://github.com/moneymanagerex/LuaGlue.git) registered
for path '3rd/LuaGlue’

Submodule '3rd/cgitemplate’ (https://github.com/moneymanagerex/html-template.qgit)
registered for path '3rd/cgitemplate’

Submodule '3rd/mongoose’ (https://github.com/cesanta/mongoose.qit) registered for
path '3rd/mongoose’

Submodule 'lib/wxsqlite3' (https://github.com/utelle/wxsqlite3.qit) registered for
path 'lib/wxsqlite3’

[...]

Cloning into
"/home/mat/work/freebsd/ports/finance/moneymanagerex/moneymanagerex/3rd/LuaGlue’..

Cloning into
"/home/mat/work/freebsd/ports/finance/moneymanagerex/moneymanagerex/3rd/cgitemplat

31

https://man.freebsd.org/cgi/man.cgi?query=git-submodule&sektion=1&format=html
https://cgit.freebsd.org/ports/tree/finance/moneymanagerex/
https://github.com/moneymanagerex/moneymanagerex/
https://github.com/moneymanagerex/moneymanagerex/
https://github.com/moneymanagerex/moneymanagerex/blob/master/.gitmodules

32

e'...
Cloning into
"/home/mat/work/freebsd/ports/finance/moneymanagerex/moneymanagerex/3rd/mongoose"’ .

Cloning into
'/home/mat/work/freebsd/ports/finance/moneymanagerex/moneymanagerex/1lib/wxsqlite3’
[...]

Submodule path '3rd/LuaGlue’: checked out
'c51d11a247ee4d1e9817dfa2a8da8d9e2f97ae3b"

Submodule path '3rd/cgitemplate’: checked out
'cd434eeeb35904ebcd3d718ba29c281a649b192¢"

Submodule path '3rd/mongoose’: checked out
'2140e5992ab9a3a9%a34ce9a281abf57f00f95cda’

Submodule path 'lib/wxsqlite3': checked out
'fbbbeb230d8aed21dec273b38c7¢c054dcb7d6b51"

[...]

% cd moneymanagerex

% git submodule status

c51d11a247ee4d1e9817dfa2a8da8d9e2f97ae3b 3rd/LuaGlue (heads/master)
cd434eeeb35904ebcd3d718ba29¢c281a649b192¢ 3rd/cgitemplate (cd434ee)
2140e5992ab9a3a9%a34ce9a281abf57f00f95cda 3rd/mongoose (6.2-138-9g2140e59)
fbbbeb230d8aed21dec273b38c7c054dcb7d6b51 1ib/wxsqlite3 (v3.4.0)

[...]

It can also be found on GitHub. Each subdirectory that is a submodule is shown as directory @
hash, for example, mongoose @ 2140e59.

While getting the information from GitHub seems more straightforward, the
information found wusing git submodule status will provide more meaningful
information. For example, here, lib/wxsqlite3's commit hash fb66eb2 correspond to
v3.4.0. Both can be used interchangeably, but when a tag is available, use it.

Now that all the required information has been gathered, the Makefile can be written (only
GitHub-related lines are shown):

PORTNAME= moneymanagerex
DISTVERSIONPREFIX= v
DISTVERSION= 1.3.0

USE_GITHUB= yes

GH_TUPLE= utelle:wxsqlite3:v3.4.0:wxsqlite3/1ib/wxsqlite3 \
moneymanagerex:LuaGlue:c51d11a:1lua_glue/3rd/LuaGlue \
moneymanagerex:html-template:cd434ee:html_template/3rd/cgitemplate \
cesanta:mongoose:2140e59:mongoose/3rd/mongoose \

[...]

5.4.4. USE_GITLAB

Similar to GitHub, if the distribution file comes from gitlab.com or is hosting the GitLab software,
these variables are available for use and might need to be set.

Table 6. USE_GITLAB Description

Variable
GL_SITE

GL_ACCOUNT

GL_PROJECT
GL_COMMIT

GL_SUBDIR

GL_TUPLE

Description

Site name hosting the GitLab
project

Account name of the GitLab
user hosting the project

Name of the project on GitLab

The commit hash to download.
Must be the full 160 bit, 40
character hex shal hash. This is
a required variable for GitLab.

When the software needs an
additional distribution file to be
extracted within ${WRKSRC}, this
variable can be used. See the
examples in Fetching Multiple
Files from GitLab for more
information.

GL_TUPLE allows putting GL_SITE,
GL_ACCOUNT, GL_PROJECT,
GL_COMMIT, and GL_SUBDIR into a
single variable. The format is
site " : account : project : com
mit " : group /subdir. The
site:” and °/ subdir part is
optional. It is helpful when
there are more than one GitLab
project from which to fetch.

Example 22. Simple Use of USE_GITLAB

Default

https://gitlab.com/

${PORTNAME }

${PORTNAME}

(none)

(none)

While trying to make a port for version 1.14 of libsignon-glib from the accounts-sso user on
gitlab.com, at https://gitlab.com/accounts-sso/libsignon-glib/, The Makefile would end up
looking like this for fetching the distribution files:

PORTNAME=
DISTVERSION= 1.14
USE_GITLAB= yes
GL_ACCOUNT= accounts-sso

libsignon-glib

33

https://gitlab.com/
https://gitlab.com/
https://gitlab.com/accounts-sso/libsignon-glib/

GL_COMMIT=

€90302e342bfd27bc8c9132ab9d0ea3d87231d03

It will automatically have MASTER_SITES set to gitlab.com and WRKSRC to ${WRKDIR}/1libsignon-
glib-e90302e342bfd27bc8c9132ab9d0ea3d87231d03-e90302e342bfd27bc8c9132ab9dAea3d87231d03.

Example 23. More Complete Use of USE_GITLAB

A more complete use of the above if port had no versioning and foobar from the foo user on
project bar on a self hosted GitLab site https://gitlab.example.com/, the Makefile ends up
looking like this for fetching distribution files:

PORTNAME=

DISTVERSION=

USE_GITLAB=

GL_SITE=

GL_ACCOUNT=
GL_PROJECT=

GL_COMMIT=

foobar
g20170906

yes

https://gitlab.example.com

foo

bar
9c1669ceb0c3f4f5eb43df874d7314483fb318ab

It will have MASTER_SITES set to "https://gitlab.example.com" and WRKSRC to ${WRKDIR}/bar-
9¢1669ceb60c3f4f5eb43df874d73144831b3f8ab-9c1669ceb0c3f4f5eb43df874d7314483fb3f8ab.

Q

20170906 is the date of the commit referenced in GL_COMMIT, not the date the
Makefile is edited, or the date the commit to the FreeBSD ports tree is made.

GL_SITE's protocol, port and webroot can all be modified in the same variable.

5.4.4.1. Fetching Multiple Files from GitLab

The USE_GITLAB framework also supports fetching multiple distribution files from different places
from GitLab and GitLab hosted sites. It works in a way very similar to Multiple Distribution or
Patches Files from Multiple Locations and Fetching Multiple Files from GitLab.

Multiple values are added to GL_SITE, GL_ACCOUNT, GL_PROJECT and GL_COMMIT. Each different value is

assigned a group. USE_GITLAB Description.

GL_TUPLE can also be used when there are a lot of distribution files. It helps keep the site, account,
project, commit, and group information at the same place.

For each group, a ${WRKSRC_group} helper variable is created, containing the directory into which
the file has been extracted. The ${WRKSRC_group} variables can be used to move directories around

during post-extract, or add to CONFIGURE_ARGS, or whatever is needed so that the software builds

correctly.

o The :group part must be used for only one distribution file. It is used as a unique

54

https://gitlab.com/
https://gitlab.example.com/

key and using it more than once will overwrite the previous values.

As this is only syntactic sugar above DISTFILES and MASTER_SITES, the group names
o must adhere to the restrictions on group names outlined in Multiple Distribution
or Patches Files from Multiple Locations

When fetching multiple files using GitLab, sometimes the default distribution file is not fetched
from a GitLab site. To disable fetching the default distribution, set:

USE_GITLAB= nodefault

When using USE_GITLAB=nodefault, the Makefile must set DISTFILES in its top block.
The definition should be:

DISTFILES= ${DISTNAME}${EXTRACT _SUFX}

Example 24. Use of USE_GITLAB with Multiple Distribution Files

From time to time, there is a need to fetch more than one distribution file. For example, when
the upstream git repository uses submodules. This can be done easily using groups in the GL_*
variables:

PORTNAME= foo
DISTVERSION= 1.0.2

USE_GITLAB= yes

GL_SITE= https://gitlab.example.com:9434/gitlab:icons
GL_ACCOUNT= bar:icons,contrib

GL_PROJECT= foo-icons:icons foo-contrib:contrib
GL_COMMIT= ¢189207a55da45305c884fe2b50e086fcad4724b
ae7368cab1ca’ca754b38d49da064df87968ffed: icons
9e4dd76ad9b38f33fdb417a4c01935958d5acd2a:contrib
GL_SUBDIR= ext/icons:icons

CONFIGURE ARGS= --with-contrib=${WRKSRC contrib}

This will fetch two distribution files from gitlab.com and one from gitlab.example.com hosting
GitLab. The default one comes from https:/gitlab.com/foo/foo and commit is
c189207355da45305c884fe2b50e086fcad4724b. The second one, with the icons group, comes from
https://gitlab.example.com:9434/gitlab/bar/foo-icons and commit is
ae7368cab1ca7ca754b38d49dad64df87968ffe4. The third one comes from https://gitlab.com/bar/
foo-contrib and is commit 9e4dd76ad9b38f33fdb417a4c01935958d5acd2a. The distribution files are
named foo-foo-c189207a55da45305c884fe2b50e086fcad4724b_GLO.tar.gz, bar-foo-icons-
ae7368cablca7ca754b38d49da064df87968ffe4_GLO.tar.gz, and bar-foo-contrib-
9e4dd76ad9b38f33fdb417a4c01935958d5acd2a_GLO.tar.gz.

55

https://gitlab.com/foo/foo
https://gitlab.example.com:9434/gitlab/bar/foo-icons
https://gitlab.com/bar/foo-contrib
https://gitlab.com/bar/foo-contrib

All the distribution files are extracted in ${WRKDIR} in their respective subdirectories. The
default file is still extracted in ${WRKSRC}, in this case, ${WRKDIR}/foo-
c189207a55da45305c884fe2b50e086fcad4724b-c189207a55da45305c884fe2b50e086fcad4724b.
Each additional distribution file is extracted in ${WRKSRC_group}. Here, for the icons group, it is
called ${WRKSRC _icons} and it contains ${WRKDIR}/foo-icons-
ae7368cablca7ca754b38d49da064df87968ffe4-ae7368cablca7ca754b38d49da064df87968ffe4.
The file with the contrib group is called ${WRKSRC_contrib} and contains ${WRKDIR}/foo-contrib-
9e4dd76ad9b38f33fdb417a4c01935958d5acd2a-9e4dd76ad9b38f33fdb417a4c01935958d5acd?2a.

The software’s build system expects to find the icons in a ext/icons subdirectory in its sources,
so GL_SUBDIR is used. GL_SUBDIR makes sure that ext exists, but that ext/icons does not already
exist. Then it does this:

post-extract:
@${MV} ${WRKSRC icons} ${WRKSRC}/ext/icons

Example 25. Use of USE_GITLAB with Multiple Distribution Files Using GL_TUPLE

This is functionally equivalent to Use of USE_GITLAB with Multiple Distribution Files, but using
GL_TUPLE:

PORTNAME= foo
DISTVERSION= 1.0.2

USE_GITLAB= yes

GL_COMMIT= ¢189207a55da45305c884fe2b50e086fcad4724b

GL_TUPLE= https://gitlab.example.com:9434/gitlab:bar:foo-

icons:ae7368cab1ca7ca’754b38d49da064df87968ffed:icons/ext/icons \
bar:foo-contrib:9e4dd76ad9b38f33fdb417a4c01935958d5acd2a:contrib

CONFIGURE_ARGS= --with-contrib=${WRKSRC contrib}

Grouping was used in the previous example with bar:icons,contrib. Some redundant
information is present with GL_TUPLE because grouping is not possible.

5.4.5. EXTRACT _SUFX

If there is one distribution file, and it uses an odd suffix to indicate the compression mechanism, set
EXTRACT_SUFX.

For example, if the distribution file was named foo.tar.gzip instead of the more normal foo.tar.gz,
write:

DISTNAME= foo
EXTRACT_SUFX= .tar.gzip

36

The USES=tar[:xxx], USES=1ha or USES=zip automatically set EXTRACT_SUFX to the most common
archives extensions as necessary, see Using USES Macros for more details. If neither of these are set
then EXTRACT_SUFX defaults to .tar.qgz.

o As EXTRACT_SUFX is only used in DISTFILES, only set one of them..

5.4.6. DISTFILES

Sometimes the names of the files to be downloaded have no resemblance to the name of the port.
For example, it might be called source.tar.gz or similar. In other cases the application’s source code
might be in several different archives, all of which must be downloaded.

If this is the case, set DISTFILES to be a space separated list of all the files that must be downloaded.
DISTFILES= sourcel.tar.gz source2.tar.gz

If not explicitly set, DISTFILES defaults to ${DISTNAME}${EXTRACT _SUFX}.

5.4.7. EXTRACT_ONLY
If only some of the DISTFILES must be extracted-for example, one of them is the source code, while

another is an uncompressed document-list the filenames that must be extracted in EXTRACT_ONLY.

DISTFILES= source.tar.gz manual.html
EXTRACT_ONLY= source.tar.gz

When none of the DISTFILES need to be uncompressed, set EXTRACT_ONLY to the empty string.

EXTRACT _ONLY=

5.4.8. PATCHFILES

If the port requires some additional patches that are available by FTP or HTTP, set PATCHFILES to the
names of the files and PATCH_SITES to the URL of the directory that contains them (the format is the
same as MASTER_SITES).

If the patch is not relative to the top of the source tree (that is, WRKSRC) because it contains some
extra pathnames, set PATCH_DIST_STRIP accordingly. For instance, if all the pathnames in the patch
have an extra foozolix-1.0/ in front of the filenames, then set PATCH_DIST_STRIP=-pT.

Do not worry if the patches are compressed; they will be decompressed automatically if the
filenames end with .Z, .gz, .bz2 or .xz.

If the patch is distributed with some other files, such as documentation, in a compressed tarball,
using PATCHFILES is not possible. If that is the case, add the name and the location of the patch
tarball to DISTFILES and MASTER_SITES. Then, use EXTRA_PATCHES to point to those files and

57

bsd.port.mk will automatically apply them. In particular, do not copy patch files into ${PATCHDIR}.
That directory may not be writable.

If there are multiple patches and they need mixed values for the strip parameter, it
can be added alongside the patch name in PATCHFILES, e.g:

PATCHFILES= patch1 patch2:-p1

This does not conflict with the master site grouping feature, adding a group also
works:

PATCHFILES= patch2:-p1:source2

The tarball will have been extracted alongside the regular source by then, so there
is no need to explicitly extract it if it is a regular compressed tarball. Take extra

o care not to overwrite something that already exists in that directory if extracting it
manually. Also, do not forget to add a command to remove the copied patch in the
pre-clean target.

5.4.9. Multiple Distribution or Patches Files from Multiple Locations

(Consider this to be a somewhat "advanced topic"; those new to this document may wish to skip this
section at first).

This section has information on the fetching mechanism known as both MASTER_SITES:n and
MASTER_SITES_NN. We will refer to this mechanism as MASTER_SITES:n.

A little background first. OpenBSD has a neat feature inside DISTFILES and PATCHFILES which allows
files and patches to be postfixed with :n identifiers. Here, n can be any word containing [0-9a-zA-
Z_] and denote a group designation. For example:

DISTFILES= alpha:@ beta:1
In OpenBSD, distribution file alpha will be associated with variable MASTER_SITES@ instead of our

common MASTER_SITES and beta with MASTER _SITEST.

This is a very interesting feature which can decrease that endless search for the correct download
site.

Just picture 2 files in DISTFILES and 20 sites in MASTER_SITES, the sites slow as hell where beta is
carried by all sites in MASTER_SITES, and alpha can only be found in the 20th site. It would be such a
waste to check all of them if the maintainer knew this beforehand, would it not? Not a good start
for that lovely weekend!

Now that you have the idea, just imagine more DISTFILES and more MASTER_SITES. Surely our
"distfiles survey meister" would appreciate the relief to network strain that this would bring.

38

In the next sections, information will follow on the FreeBSD implementation of this idea. We
improved a bit on OpenBSD’s concept.

The group names cannot have dashes in them (-), in fact, they cannot have any
o characters out of the [a-zA-70-9_] range. This is because, while make(1) is ok with
variable names containing dashes, sh(1) is not.

5.4.9.1. Simplified Information

This section explains how to quickly prepare fine grained fetching of multiple distribution files and
patches from different sites and subdirectories. We describe here a case of simplified
MASTER_SITES:n usage. This will be sufficient for most scenarios. More detailed information are
available in Detailed Information.

Some applications consist of multiple distribution files that must be downloaded from a number of
different sites. For example, Ghostscript consists of the core of the program, and then a large
number of driver files that are used depending on the user’s printer. Some of these driver files are
supplied with the core, but many others must be downloaded from a variety of different sites.

To support this, each entry in DISTFILES may be followed by a colon and a "group name". Each site
listed in MASTER_SITES is then followed by a colon, and the group that indicates which distribution
files are downloaded from this site.

For example, consider an application with the source split in two parts, sourcel.tar.gz and
source2.tar.gz, which must be downloaded from two different sites. The port’s Makefile would
include lines like Simplified Use of MASTER_SITES:n with One File Per Site.

Example 26. Simplified Use of MASTER_SITES:n with One File Per Site

MASTER_SITES= ftp://ftpl.example.com/:sourcel \
http://www.example.com/:source2

DISTFILES= sourcel.tar.gz:sourcel \
source?.tar.gz:source?

Multiple distribution files can have the same group. Continuing the previous example, suppose that
there was a third distfile, source3.tar.gz, that is downloaded from ftp.example2.com. The Makefile
would then be written like Simplified Use of MASTER_SITES:n with More Than One File Per Site.

Example 27. Simplified Use of MASTER_SITES:n with More Than One File Per Site

MASTER_SITES= ftp://ftp.example.com/:sourcel \
http://www.example.com/:source2

DISTFILES= sourcel.tar.gz:sourcel \
source2.tar.gz:source2 \
source3.tar.gz:source?

39

https://man.freebsd.org/cgi/man.cgi?query=make&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=sh&sektion=1&format=html

5.4.9.2. Detailed Information

Okay, so the previous example did not reflect the new port’s needs? In this section we will explain
in detail how the fine grained fetching mechanism MASTER_SITES:n works and how it can be used.

1. Elements can be postfixed with :n where n is ', that is, _n_ could conceptually be any
alphanumeric string but we will limit it to ‘[a-zA-Z_][0-9a-zA-Z_] for now.

Moreover, string matching is case sensitive; that is, n is different from N.

However, these words cannot be used for postfixing purposes since they yield special meaning:
default, all and ALL (they are used internally in item ii). Furthermore, DEFAULT is a special
purpose word (check item 3).

2. Elements postfixed with :n belong to the group n, :m belong to group m and so forth.

3. Elements without a postfix are groupless, they all belong to the special group DEFAULT. Any
elements postfixed with DEFAULT, is just being redundant unless an element belongs to both
DEFAULT and other groups at the same time (check item 5).

These examples are equivalent but the first one is preferred:

MASTER_SITES= alpha

MASTER_SITES= alpha:DEFAULT
4. Groups are not exclusive, an element may belong to several different groups at the same time

and a group can either have either several different elements or none at all.

5. When an element belongs to several groups at the same time, use the comma operator (,).

Instead of repeating it several times, each time with a different postfix, we can list several
groups at once in a single postfix. For instance, :m,n,o0 marks an element that belongs to group m,
n and o.

All these examples are equivalent but the last one is preferred:

MASTER_SITES= alpha alpha:SOME_SITE

MASTER_SITES= alpha:DEFAULT alpha:SOME_SITE

MASTER_SITES= alpha:SOME_SITE,DEFAULT

MASTER_SITES= alpha:DEFAULT,SOME_SITE

60

6. All sites within a given group are sorted according to MASTER_SORT_AWK. All groups within
MASTER_SITES and PATCH_SITES are sorted as well.

7. Group semantics can be wused in any of the wvariables MASTER_SITES, PATCH_SITES,
MASTER_SITE_SUBDIR, PATCH_SITE_SUBDIR, DISTFILES, and PATCHFILES according to this syntax:

a. All MASTER_SITES, PATCH_SITES, MASTER_SITE_SUBDIR and PATCH_SITE_SUBDIR elements must be
terminated with the forward slash / character. If any elements belong to any groups, the
group postfix :n must come right after the terminator /. The MASTER_SITES:n mechanism
relies on the existence of the terminator / to avoid confusing elements where a :n is a valid
part of the element with occurrences where :n denotes group n. For compatibility purposes,
since the / terminator was not required before in both MASTER_SITE_SUBDIR and
PATCH_SITE_SUBDIR elements, if the postfix immediate preceding character is not a / then :n
will be considered a valid part of the element instead of a group postfix even if an element is
postfixed with :n. See both Detailed Use of MASTER_SITES:n in MASTER_SITE_SUBDIR and Detailed
Use of MASTER_SITES:n with Comma Operator.

Example 28. Detailed Use of MASTER_SITES:n in MASTER_SITE_SUBDIR

MASTER_SITE_SUBDIR= old:n new/:NEW

= Directories within group DEFAULT - old:n

» Directories within group NEW - new

Example 29. Detailed Use of MASTER_SITES:n with Comma Operator, Multiple Files, Multiple Sites
and Multiple Subdirectories

MASTER_SITES= http://site1/%SUBDIR%/ http://site2/:DEFAULT \
http://site3/:group3 http://site4/:groupd \
http://site5/:group5 http://site6/:groupb \
http://site7/:DEFAULT,groupb \
http://s1te8/%SUBDIR%/:groupb,group7 \
http://site9/:group8

DISTFILES= filel file2:DEFAULT file3:group3 \
filed:group4,group5,groupb file5:grouping \
fileb:group7

MASTER_SITE_SUBDIR= directory-trial:1 directory-n/:groupn \
directory-one/:groupb,DEFAULT \
directory

The previous example results in this fine grained fetching. Sites are listed in the exact
order they will be used.

» file1l will be fetched from
= MASTER_SITE_OVERRIDE

= http://sitel/directory-trial:1/

61

http://site1/directory-trial:1/

http://site1/directory-one/

http://sitel/directory/

http://site2/

http://site7/

MASTER_SITE_BACKUP
= file2 will be fetched exactly as filel since they both belong to the same group
= MASTER_SITE_OVERRIDE

http://sitel/directory-trial:1/

http://site1/directory-one/

http://sitel/directory/

http://site2/

http://site7/

MASTER_SITE_BACKUP

= file3 will be fetched from
= MASTER_SITE_OVERRIDE
= http://site3/
= MASTER_SITE_BACKUP

= file4 will be fetched from
= MASTER_SITE_OVERRIDE

http://site4/

http://site5/

http://site6/

http://site7/

http://site8/directory-one/

MASTER_SITE_BACKUP

= file5 will be fetched from
= MASTER_SITE_OVERRIDE
= MASTER_SITE_BACKUP

= file6 will be fetched from
= MASTER_SITE_OVERRIDE
= http://site8/
= MASTER_SITE_BACKUP

8. How do I group one of the special macros from bsd.sites.mk, for example, SourceForge (SF)?

62

http://site1/directory-one/
http://site1/directory/
http://site2/
http://site7/
http://site1/directory-trial:1/
http://site1/directory-one/
http://site1/directory/
http://site2/
http://site7/
http://site3/
http://site4/
http://site5/
http://site6/
http://site7/
http://site8/directory-one/
http://site8/

This has been simplified as much as possible. See Detailed Use of MASTER_SITES:n with
SourceForge (SF).

Example 30. Detailed Use of MASTER_SITES:n with SourceForge (SF)

MASTER_SITES= http://sitel/ SF/something/1.0:sourceforge, TEST
DISTFILES= something.tar.gz:sourceforge

something.tar.gz will be fetched from all sites within SourceForge.

9. How do I use this with PATCH*?

All examples were done with MASTER* but they work exactly the same for PATCH* ones as can be
seen in Simplified Use of MASTER_SITES:n with PATCH_SITES.

Example 31. Simplified Use of MASTER_SITES:n with PATCH_SITES

PATCH_SITES= http://sitel/ http://site2/:test
PATCHFILES= patch1:test

5.4.9.3. What Does Change for Ports? What Does Not?

i. All current ports remain the same. The MASTER_SITES:n feature code is only activated if there are
elements postfixed with :n like elements according to the aforementioned syntax rules,
especially as shown in item 7.

ii. The port targets remain the same: checksum, makesum, patch, confiqure, build, etc. With the
obvious exceptions of do-fetch, fetch-1list, master-sites and patch-sites.

o do-fetch: deploys the new grouping postfixed DISTFILES and PATCHFILES with their matching
group elements within both MASTER_SITES and PATCH_SITES which use matching group
elements within both MASTER_SITE_SUBDIR and PATCH_SITE_SUBDIR. Check Detailed Use of
MASTER_SITES:n with Comma Operator.

o fetch-list: works like old fetch-1ist with the exception that it groups just like do-fetch.

o master-sites and patch-sites: (incompatible with older versions) only return the elements
of group DEFAULT; in fact, they execute targets master-sites-default and patch-sites-default
respectively.

Furthermore, using target either master-sites-all or patch-sites-all is preferred to directly
checking either MASTER_SITES or PATCH_SITES. Also, directly checking is not guaranteed to
work in any future versions. Check item B for more information on these new port targets.

iii. New port targets

a. There are master-sites-n and patch-sites-n targets which will list the elements of the
respective group n within MASTER_SITES and PATCH_SITES respectively. For instance, both
master-sites-DEFAULT and patch-sites-DEFAULT will return the elements of group DEFAULT,

63

master-sites-test and patch-sites-test of group test, and thereon.

b. There are new targets master-sites-all and patch-sites-all which do the work of the old
master-sites and patch-sites ones. They return the elements of all groups as if they all
belonged to the same group with the caveat that it lists as many MASTER_SITE_BACKUP and
MASTER_SITE_OVERRIDE as there are groups defined within either DISTFILES or PATCHFILES;
respectively for master-sites-all and patch-sites-all.

5.4.10. DIST_SUBDIR

Do not let the port clutter /usr/ports/distfiles. If the port requires a lot of files to be fetched, or
contains a file that has a name that might conflict with other ports (for example, Makefile), set
DIST_SUBDIR to the name of the port (${PORTNAME} or ${PKGNAMEPREFIX}${PORTNAME} are fine). This will
change DISTDIR from the default /usr/ports/distfiles to /usr/ports/distfiles/${DIST_SUBDIR}, and in
effect puts everything that is required for the port into that subdirectory.

It will also look at the subdirectory with the same name on the backup master site at
http://distcache.FreeBSD.org (Setting DISTDIR explicitly in Makefile will not accomplish this, so
please use DIST_SUBDIR.)

o This does not affect MASTER_SITES defined in the Makefile.

5.5. MAINTAINER

Set your mail-address here. Please. :-)

Only a single address without the comment part is allowed as a MAINTAINER value. The format used is
user@hostname.domain. Please do not include any descriptive text such as a real name in this entry.
That merely confuses the Ports infrastructure and most tools using it.

The maintainer is responsible for keeping the port up to date and making sure that it works
correctly. For a detailed description of the responsibilities of a port maintainer, refer to The
challenge for port maintainers.

A maintainer volunteers to keep a port in good working order. Maintainers have
the primary responsibility for their ports, but not exclusive ownership. Ports exist
for the benefit of the community and, in reality, belong to the community. What
this means is that people other than the maintainer can make changes to a port.
Large changes to the Ports Collection might require changes to many ports. The
FreeBSD Ports Management Team or members of other teams might modify ports
to fix dependency issues or other problems, like a version bump for a shared
o library update.

Some types of fixes have "blanket approval" from the Ports Management Team
<portmgr@FreeBSD.org>, allowing any committer to fix those categories of
problems on any port. These fixes do not need approval from the maintainer.

Blanket approval for most ports applies to fixes like infrastructure changes, or
trivial and tested build and runtime fixes. The current list is available in Ports

64

http://distcache.FreeBSD.org
https://docs.freebsd.org/en/articles/contributing/#maintain-port
https://docs.freebsd.org/en/articles/contributing/#maintain-port
mailto:portmgr@FreeBSD.org
https://docs.freebsd.org/en/articles/committers-guide/#ports-qa-misc-blanket-approval

section of the Committer’s Guide.

Other changes to the port will be sent to the maintainer for review and approval before being
committed. If the maintainer does not respond to an update request after two weeks (excluding
major public holidays), then that is considered a maintainer timeout, and the update can be made
without explicit maintainer approval. If the maintainer does not respond within three months, or if
there have been three consecutive timeouts, then that maintainer is considered absent without
leave, and all of their ports can be assigned back to the pool. Exceptions to this are anything
maintained by the Ports Management Team <portmgr@FreeBSD.org>, or the Security Officer Team
<security-officer@FreeBSD.org>. No unauthorized commits may ever be made to ports maintained
by those groups.

We reserve the right to modify the maintainer’s submission to better match existing policies and
style of the Ports Collection without explicit blessing from the submitter or the maintainer. Also,
large infrastructural changes can result in a port being modified without the maintainer’s consent.
These kinds of changes will never affect the port’s functionality.

The Ports Management Team <portmgr@FreeBSD.org> reserves the right to revoke or override
anyone’s maintainership for any reason, and the Security Officer Team <security-
officer@FreeBSD.org> reserves the right to revoke or override maintainership for security reasons.

5.6. COMMENT

The comment is a one-line description of a port shown by pkg info. Please follow these rules when
composing it:

The COMMENT string should be 70 characters or less.

Do not include the package name or version number of software.

The comment must begin with a capital and end without a period.

Do not start with an indefinite article (that is, A or An).

Capitalize names such as Apache, JavaScript, or Perl.

Use a serial comma for lists of words: "green, red, and blue."

N o ok W

Check for spelling errors.

Here is an example:
COMMENT= Cat chasing a mouse all over the screen

The COMMENT variable immediately follows the MAINTAINER variable in the Makefile.

5.7. Project website

Each port should point to a website that provides more information about the software.

Whenever possible, this should be the official project website maintained by the developers of the

65

https://docs.freebsd.org/en/articles/committers-guide/#ports-qa-misc-blanket-approval
mailto:portmgr@FreeBSD.org
mailto:security-officer@FreeBSD.org
mailto:portmgr@FreeBSD.org
mailto:security-officer@FreeBSD.org
mailto:security-officer@FreeBSD.org

software.
Www= https://ffmpeg.org/

But it can also be a directory or resource in the source code repository:
Www= https://sourceforge.net/projects/mpd/

The WWW variable immediately follows the COMMENT variable in the Makefile.

If the same content can be accessed via HTTP and HTTPS, the URL starting with https:// shall be
used. If the URI is the root of the website or directory, it must be terminated with a slash.

This information used to be placed into the last line of the pkg-descr file. It has been moved into the
Makefile for easier maintenance and processing. Having a WWW: line at the end of the pkg-descr file
is deprecated.

5.8. Licenses

Each port must document the license under which it is available. If it is not an OSI approved license
it must also document any restrictions on redistribution.

5.8.1. LICENSE

A short name for the license or licenses if more than one license apply.

If it is one of the licenses listed in Predefined License List, only LICENSE_FILE and LICENSE_DISTFILES
variables can be set.

If this is a license that has not been defined in the ports framework (see Predefined License List),
the LICENSE_PERMS and LICENSE_NAME must be set, along with either LICENSE_FILE or LICENSE_TEXT.
LICENSE_DISTFILES and LICENSE_GROUPS can also be set, but are not required.

The predefined licenses are shown in Predefined License List. The current list is always available in
Mk/bsd.licenses.db.mk.

Example 32. Simplest Usage, Predefined Licenses

When the README of some software says "This software is under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version." but does not provide the license file, use this:

LICENSE= LGPL21+

When the software provides the license file, use this:

66

LICENSE= LGPL21+
LICENSE_FILE= ${WRKSRC}/COPYING

For the predefined licenses, the default permissions are dist-mirror dist-sell pkg-mirror pkg-sell
auto-accept.

Table 7. Predefined License List

Short Name Name Group Permissions
AGPLv3 GNU Affero General FSF GPL 0SI (default)
Public License version
3
AGPLv3+ GNU Affero General FSF GPL OSI (default)

Public License version
3 (or later)

APACHE10 Apache License 1.0 FSF (default)

APACHE1 Apache License 1.1 FSF 0SI (default)

APACHE20 Apache License 2.0 FSF 0SI (default)

ART10 Artistic License version 051 (default)
1.0

ART20 Artistic License version FSF GPL 0SI (default)
2.0

ARTPERL10 Artistic License (perl) 051 (default)
version 1.0

BSD BSD license Generic FSF 0SI COPYFREE (default)
Version (deprecated)

BSD2CLAUSE BSD 2-clause FSF ST COPYFREE (default)
"Simplified" License

BSD3CLAUSE BSD 3-clause "New" or FSF OSI COPYFREE (default)
"Revised" License

BSDACLAUSE BSD 4-clause "Original" FSF (default)
or "Old" License

BSL Boost Software License FSF 0SI COPYFREE (default)

CC-BY-1.0 Creative Commons (default)

Attribution 1.0

CC-BY-2.0 Creative Commons (default)
Attribution 2.0

CC-BY-2.5 Creative Commons (default)
Attribution 2.5

67

Short Name
CC-BY-3.0

CC-BY-4.0

CC-BY-NC-1.0

CC-BY-NC-2.0

CC-BY-NC-2.5

CC-BY-NC-3.0

CC-BY-NC-4.0

CC-BY-NC-ND-1.0

CC-BY-NC-ND-2.0

CC-BY-NC-ND-2.5

CC-BY-NC-ND-3.0

CC-BY-NC-ND-4.0

68

Name

Creative Commons
Attribution 3.0

Creative Commons
Attribution 4.0

Creative Commons
Attribution Non
Commercial 1.0

Creative Commons
Attribution Non
Commercial 2.0

Creative Commons
Attribution Non
Commercial 2.5

Creative Commons
Attribution Non
Commercial 3.0

Creative Commons
Attribution Non
Commercial 4.0

Creative Commons
Attribution Non
Commercial No
Derivatives 1.0

Creative Commons
Attribution Non
Commercial No
Derivatives 2.0

Creative Commons
Attribution Non
Commercial No
Derivatives 2.5

Creative Commons
Attribution Non
Commercial No
Derivatives 3.0

Creative Commons
Attribution Non
Commercial No
Derivatives 4.0

Group

Permissions

(default)

(default)

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

Short Name
CC-BY-NC-SA-1.0

CC-BY-NC-SA-2.0

CC-BY-NC-SA-2.5

CC-BY-NC-SA-3.0

CC-BY-NC-SA-4.0

CC-BY-ND-1.0

CC-BY-ND-2.0

CC-BY-ND-2.5

CC-BY-ND-3.0

CC-BY-ND-4.0

CC-BY-SA-1.0

CC-BY-SA-2.0

Name

Creative Commons
Attribution Non
Commercial Share
Alike 1.0

Creative Commons
Attribution Non
Commercial Share
Alike 2.0

Creative Commons
Attribution Non
Commercial Share
Alike 2.5

Creative Commons
Attribution Non
Commercial Share
Alike 3.0

Creative Commons
Attribution Non
Commercial Share
Alike 4.0

Creative Commons
Attribution No
Derivatives 1.0

Creative Commons
Attribution No
Derivatives 2.0

Creative Commons
Attribution No
Derivatives 2.5

Creative Commons
Attribution No
Derivatives 3.0

Creative Commons
Attribution No
Derivatives 4.0

Creative Commons

Attribution Share Alike

1.0

Creative Commons

Attribution Share Alike

2.0

Group

Permissions

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

(default)

(default)

(default)

(default)

(default)

(default)

(default)

69

Short Name
CC-BY-SA-2.5

CC-BY-SA-3.0

CC-BY-SA-4.0

CCo-1.0

CDhDL

CPAL-1.0

ClArtistic

EPL
GFDL

GMGPL

GPLv1

GPLv1+

GPLv2

GPLv2+

GPLv3

GPLv3+

70

Name

Creative Commons
Attribution Share Alike
2.5

Creative Commons
Attribution Share Alike
3.0

Creative Commons
Attribution Share Alike
4.0

Creative Commons
Zero v1.0 Universal

Common Development
and Distribution
License

Common Public
Attribution License

Clarified Artistic
License

Eclipse Public License

GNU Free
Documentation License

GNAT Modified General
Public License

GNU General Public
License version 1

GNU General Public
License version 1 (or
later)

GNU General Public
License version 2

GNU General Public
License version 2 (or
later)

GNU General Public
License version 3

GNU General Public
License version 3 (or
later)

Group

FSF

FSF

FSF

FSF

FSF
FSF

FSF

FSF

FSF

FSF

FSF

FSF

FSF

GPL COPYFREE

0SI

0SI

GPL

0SI

GPL

GPL

GPL

GPL

GPL

GPL

GPL

0SI

0SI

0SI

0SI

0SI

0SI

0SI

0SI

Permissions

(default)

(default)

(default)

(default)

(default)

(default)

(default)

(default)
(default)

(default)

(default)

(default)

(default)

(default)

(default)

(default)

Short Name
GPLV3RLE

GPLV3RLE+

ISCL

LGPL20

LGPL20+

LGPL21

LGPL21+

LGPL3

LGPL3+

LPPL10

LPPL11

LPPL12

LPPL13

LPPL13a

LPPL13b

LPPL13c

Name

GNU GPL version 3
Runtime Library
Exception

GNU GPL version 3
Runtime Library
Exception (or later)

Internet Systems
Consortium License

GNU Library General
Public License version
2.0

GNU Library General
Public License version
2.0 (or later)

GNU Lesser General
Public License version
2.1

GNU Lesser General
Public License version
2.1 (or later)

GNU Lesser General
Public License version
3

GNU Lesser General
Public License version
3 (or later)

LaTeX Project Public
License version 1.0

LaTeX Project Public
License version 1.1

LaTeX Project Public
License version 1.2

LaTeX Project Public
License version 1.3

LaTeX Project Public
License version 1.3a

LaTeX Project Public
License version 1.3b

LaTeX Project Public
License version 1.3c

Group
FSF GPL 0SI

FSF

FSF

FSF

FSF

FSF

FSF

FSF

FSF

FSF

FSF

FSF

FSF

FSF

FSF

FSF

GPL

GPL

GPL

GPL

GPL

GPL

GPL

GPL

0SI

0SI

0SI

0SI

0SI

0SI

0SI

0SI

0SI

0SI

0SI

0SI

0SI

0SI

0SI

COPYFREE

Permissions

(default)

(default)

(default)

(default)

(default)

(default)

(default)

(default)

(default)

dist-mirror dist-sell

dist-mirror dist-sell

dist-mirror dist-sell

dist-mirror dist-sell

dist-mirror dist-sell

dist-mirror dist-sell

dist-mirror dist-sell

71

Short Name

MIT

MPL10

MPL11

MPL20

NCSA

NONE
OFL10

OFLM

owL

OpenSSL
PD
PHP202

PHP30
PHP301

PSFL

PostgreSQL
RUBY
UNLICENSE
WTFPL

72

Name

MIT license / X11
license

Mozilla Public License
version 1.0

Mozilla Public License
version 1.1

Mozilla Public License
version 2.0

University of
Ilinois/NCSA Open
Source License

No license specified

SIL Open Font License
version 1.0
(https://scripts.sil.org/
OFL))

SIL Open Font License
version 1.1
(https://scripts.sil.org/
OFL))

Open Works License
(owl.apotheon.org)

OpenSSL License
Public Domain

PHP License version
2.02

PHP License version 3.0

PHP License version
3.01

Python Software
Foundation License

PostgreSQL License
Ruby License
The Unlicense

Do What the Fuck You
Want To Public License
version 2

Group
COPYFREE FSF GPL 0SI

FSF 0SI

FSF 0SI

FSF 0SI

COPYFREE FSF GPL 0SI

FONTS

FONTS

COPYFREE

FSF
GPL COPYFREE
FSF 0SI

FSF 0SI
FSF 0SI

FSF GPL 0SI

FSF GPL OSI COPYFREE
FSF

COPYFREE FSF GPL
GPL FSF COPYFREE

Permissions

(default)

(default)

(default)

(default)

(default)

none

(default)

(default)

(default)

(default)
(default)
(default)

(default)
(default)

(default)

(default)
(default)
(default)
(default)

https://scripts.sil.org/OFL/
https://scripts.sil.org/OFL/
https://scripts.sil.org/OFL/
https://scripts.sil.org/OFL/

Short Name Name Group Permissions

WTFPL1 Do What the Fuck You 6PL FSF COPYFREE (default)
Want To Public License
version 1

ZLIB z1ib License GPL FSF 0SI (default)

IPL21 Zope Public License GPL 0SI (default)
version 2.1

5.8.2. LICENSE_PERMS and LICENSE_PERMS_NAME _
Permissions. use none if empty.

License Permissions List
dist-mirror

Redistribution of the distribution files is permitted. The distribution files will be added to the
FreeBSD MASTER_SITE_BACKUP CDN.

no-dist-mirror
Redistribution of the distribution files is prohibited. This is equivalent to setting RESTRICTED. The
distribution files will not be added to the FreeBSD MASTER_SITE_BACKUP CDN.

dist-sell

Selling of distribution files is permitted. The distribution files will be present on the installer
images.

no-dist-sell

Selling of distribution files is prohibited. This is equivalent to setting NO_CDROM.

pkg-mirror

Free redistribution of package is permitted. The package will be distributed on the FreeBSD
package CDN https://pkg.freebsd.org/.

no-pkg-mirror
Free redistribution of package is prohibited. Equivalent to setting NO_PACKAGE. The package will
not be distributed from the FreeBSD package CDN https://pkg.freebsd.org/.

pkg-sell

Selling of package is permitted. The package will be present on the installer images.

no-pkg-sell
Selling of package is prohibited. This is equivalent to setting NO_CDROM. The package will not be
present on the installer images.

auto-accept

License is accepted by default. Prompts to accept a license are not displayed unless the user has
defined LICENSES_ASK. Use this unless the license states the user must accept the terms of the

73

https://pkg.freebsd.org/
https://pkg.freebsd.org/

license.

no-auto-accept

License is not accepted by default. The user will always be asked to confirm the acceptance of
this license. This must be used if the license states that the user must accept its terms.

When both permission and no-permission is present the no-permission will cancel permission.

When permission is not present, it is considered to be a no-permission.

Some missing permissions will prevent a port (and all ports depending on it) from
being usable by package users:

g A port without the auto-accept permission will never be be built and all the ports
depending on it will be ignored.

A port without the pkg-mirror permission will be removed, as well as all the ports
depending on it, after the build and they will ever end up being distributed.

Example 33. Nonstandard License

Read the terms of the license and translate those using the available permissions.

LICENSE= UNKNOWN
LICENSE_NAME= unknown
LICENSE_TEXT= This program is NOT in public domain.\
It can be freely distributed for non-commercial purposes only.
LICENSE_PERMS= dist-mirror no-dist-sell pkg-mirror no-pkg-sell auto-accept

Example 34. Standard and Nonstandard Licenses

Read the terms of the license and express those using the available permissions. In case of
doubt, please ask for guidance on the FreeBSD ports mailing list.

LICENSE= WARSOW GPLv2

LICENSE_COMB= multi

LICENSE_NAME_WARSOW= Warsow Content License

LICENSE _FILE WARSOW= ${WRKSRC}/docs/1license.txt
LICENSE_PERMS_WARSOW= dist-mirror pkg-mirror auto-accept

When the permissions of the GPLv2 and the UNKNOWN licenses are mixed, the port ends up
with dist-mirror dist-sell pkg-mirror pkg-sell auto-accept dist-mirror no-dist-sell pkg-
mirror no-pkg-sell auto-accept. The no-permissions cancel the permissions. The resulting list of
permissions are dist-mirror pkg-mirror auto-accept. The distribution files and the packages will
not be available on the installer images.

74

https://lists.FreeBSD.org/subscription/freebsd-ports

5.8.3. LICENSE_GROUPS and LICENSE_GROUPS_NAME
Groups the license belongs.

Predefined License Groups List
FSF

Free Software Foundation Approved, see the FSF Licensing & Compliance Team.

GPL
GPL Compatible

0SI

OSI Approved, see the Open Source Initiative Open Source Licenses page.

COPYFREE
Comply with Copyfree Standard Definition, see the Copyfree Licenses page.

FONTS

Font licenses

5.8.4. LICENSE_NAME and LICENSE_NAME_NAME

Full name of the license.

Example 35. LICENSE_NAME
LICENSE= UNRAR
LICENSE_NAME= UnRAR License

LICENSE FILE= ${WRKSRC}/license.txt
LICENSE_PERMS= dist-mirror dist-sell pkg-mirror pkg-sell auto-accept

5.8.5. LICENSE_FILE and LICENSE_FILE_NAME

Full path to the file containing the license text, usually ${WRKSRC}/some/file. If the file is not in the
distfile, and its content is too long to be put in LICENSE_TEXT, put it in a new file in ${FILESDIR}.

Example 36. LICENSE_FILE

LICENSE= GPLv3+
LICENSE_FILE= ${WRKSRC}/COPYING

5.8.6. LICENSE_TEXT and LICENSE_TEXT_NAME

Text to use as a license. Useful when the license is not in the distribution files and its text is short.

75

https://www.fsf.org/licensing/
https://opensource.org/licenses/
https://copyfree.org/standard/licenses/

Example 37. LICENSE_TEXT

LICENSE= UNKNOWN

LICENSE_NAME= unknown

LICENSE_TEXT= This program is NOT in public domain.\
It can be freely distributed for non-commercial purposes only,\
and THERE IS NO WARRANTY FOR THIS PROGRAM.

LICENSE_PERMS= dist-mirror no-dist-sell pkg-mirror no-pkg-sell auto-accept

5.8.7. LICENSE_DISTFILES and LICENSE_DISTFILES_NAME

The distribution files to which the licenses apply. Defaults to all the distribution files.

Example 38. LICENSE_DISTFILES

Used when the distribution files do not all have the same license. For example, one has a code

license, and another has some artwork that cannot be redistributed:

MASTER_SITES= SF/some-game

DISTFILES= ${DISTNAME}${EXTRACT_SUFX} artwork.zip

LICENSE= BSD3CLAUSE ARTWORK

LICENSE_COMB= dual

LICENSE_NAME_ARTWORK= The game artwork license

LICENSE TEXT_ARTWORK= The README says that the files cannot be redistributed
LICENSE_PERMS_ARTWORK= pkg-mirror pkg-sell auto-accept

LICENSE_DISTFILES_BSD3CLAUSE= ${DISTNAME}${EXTRACT_SUFX}
LICENSE_DISTFILES_ARTWORK= artwork.zip

5.8.8. LICENSE_COMB
Set tomulti if all licenses apply. Set to dual if any license applies. Defaults to single.

Example 39. Dual Licenses

When a port says "This software may be distributed under the GNU General Public License or

the Artistic License", it means that either license can be used. Use this:

LICENSE= ART10 GPLv1
LICENSE_COMB= dual

If license files are provided, use this:

LICENSE= ART10 GPLv1

76

LICENSE_COMB= dual
LICENSE_FILE_ART10= ${WRKSRC}/Artistic
LICENSE_FILE_GPLv1= ${WRKSRC}/Copying

Example 40. Multiple Licenses

When part of a port has one license, and another part has a different license, use multi:

LICENSE= GPLv2 LGPL21+
LICENSE_COMB= multi

5.9. PORTSCOUT

Portscout is an automated distfile check utility for the FreeBSD Ports Collection, described in detail
in Portscout: the FreeBSD Ports Distfile Scanner.

PORTSCOUT defines special conditions within which the Portscout distfile scanner is restricted.
Situations where PORTSCOUT is set include:

* When distfiles have to be ignored for specific versions. For example, to exclude version 8.2 and
version 8.3 from distfile version checks because they are known to be broken, add:

PORTSCOUT= skipv:8.2,8.3

* When distfile version checks have to be disabled completely. For example, if a port is not going
to be updated ever again, add:

PORTSCOUT= ignore:1

* When specific versions or specific major and minor revisions of a distfile must be checked. For
example, if only version 0.6.4 must be monitored because newer versions have compatibility
issues with FreeBSD, add:

PORTSCOUT= T1imit:"0\.6\.4

* When URLs listing the available versions differ from the download URLs. For example, to limit
distfile version checks to the download page for the databases/pgtune port, add:

PORTSCOUT= site:http://www.renpy.org/dl/release/

77

https://cgit.freebsd.org/ports/tree/databases/pgtune/

5.10. Dependencies

Many ports depend on other ports. This is a very convenient feature of most Unix-like operating
systems, including FreeBSD. Multiple ports can share a common dependency, rather than bundling
that dependency with every port or package that needs it. There are seven variables that can be
used to ensure that all the required bits will be on the user’s machine. There are also some pre-
supported dependency variables for common cases, plus a few more to control the behavior of
dependencies.

When software has extra dependencies that provide extra features, the base
dependencies listed in *_DEPENDS should include the extra dependencies that would

o benefit most users. The base dependencies should never be a "minimal"
dependency set. The goal is not to include every dependency possible. Only include
those that will benefit most people.

5.10.1. LIB_DEPENDS

This variable specifies the shared libraries this port depends on. It is a list of 1ib:dir tuples where
1ib is the name of the shared library, dir is the directory in which to find it in case it is not
available. For example,

LIB_DEPENDS= 1libjpeg.so:graphics/jpeg

will check for a shared jpeg library with any version, and descend into the graphics/jpeg
subdirectory of the ports tree to build and install it if it is not found.

The dependency is checked twice, once from within the build target and then from within the
install target. Also, the name of the dependency is put into the package so that pkg install (see
pkg-install(8)) will automatically install it if it is not on the user’s system.

5.10.2. RUN_DEPENDS

This variable specifies executables or files this port depends on during run-time. It is a list of
path:dir[:target] tuples where path is the name of the executable or file, dir is the directory in
which to find it in case it is not available, and target is the target to call in that directory. If path
starts with a slash (/), it is treated as a file and its existence is tested with test -e; otherwise, it is
assumed to be an executable, and which -s is used to determine if the program exists in the search
path.

For example,

RUN_DEPENDS= ${LOCALBASE}/news/bin/innd:news/inn \
xmlcatmgr:textproc/xmlcatmgr

will check if the file or directory /usr/local/news/bin/innd exists, and build and install it from the
news/inn subdirectory of the ports tree if it is not found. It will also see if an executable called

78

https://man.freebsd.org/cgi/man.cgi?query=pkg-install&sektion=8&format=html

xmlcatmgr is in the search path, and descend into textproc/xmlcatmgr to build and install it if it is
not found.

e In this case, innd is actually an executable; if an executable is in a place that is not
expected to be in the search path, use the full pathname.

The official search PATH used on the ports build cluster is

/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin

The dependency is checked from within the install target. Also, the name of the dependency is put
into the package so that pkg install (see pkg-install(8)) will automatically install it if it is not on the
user’s system. The target part can be omitted if it is the same as DEPENDS_TARGET.

A quite common situation is when RUN_DEPENDS is literally the same as BUILD_DEPENDS, especially if
ported software is written in a scripted language or if it requires the same build and run-time
environment. In this case, it is both tempting and intuitive to directly assign one to the other:

RUN_DEPENDS= ${BUILD_DEPENDS}

However, such assignment can pollute run-time dependencies with entries not defined in the port’s
original BUILD_DEPENDS. This happens because of make(1)'s lazy evaluation of variable assignment.
Consider a Makefile with USE_*, which are processed by ports/Mk/bsd.*mk to augment initial build
dependencies. For example, USES= gmake adds devel/gmake to BUILD_DEPENDS. To prevent such
additional dependencies from polluting RUN_DEPENDS, create another variable with the current
content of BUILD_DEPENDS and assign it to both BUILD_DEPENDS and RUN_DEPENDS:

MY _DEPENDS= some:devel/some \
other:lang/other

BUILD_DEPENDS= ${MY_DEPENDS}

RUN_DEPENDS= ${MY_DEPENDS}

Do not use :=to assign BUILD_DEPENDS to RUN_DEPENDS or vice-versa. All variables are
o expanded immediately, which is exactly the wrong thing to do and almost always a
failure.

5.10.3. BUILD_DEPENDS

This variable specifies executables or files this port requires to build. Like RUN_DEPENDS, it is a list of
path:dir[:target] tuples. For example,

BUILD_DEPENDS= wunzip:archivers/unzip

will check for an executable called unzip, and descend into the archivers/unzip subdirectory of the

79

https://man.freebsd.org/cgi/man.cgi?query=pkg-install&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=make&sektion=1&format=html
https://cgit.freebsd.org/ports/tree/devel/gmake/

ports tree to build and install it if it is not found.

"build" here means everything from extraction to compilation. The dependency is
o checked from within the extract target. The target part can be omitted if it is the
same as DEPENDS_TARGET

5.10.4. FETCH_DEPENDS

This variable specifies executables or files this port requires to fetch. Like the previous two, it is a
list of path:dir[:target] tuples. For example,

FETCH_DEPENDS= ncftp2:net/ncftp2

will check for an executable called ncftp2, and descend into the net/ncftp2 subdirectory of the ports
tree to build and install it if it is not found.

The dependency is checked from within the fetch target. The target part can be omitted if it is the
same as DEPENDS_TARGET.

5.10.5. EXTRACT _DEPENDS

This variable specifies executables or files this port requires for extraction. Like the previous, it is a
list of path:dir[:target] tuples. For example,

EXTRACT_DEPENDS= unzip:archivers/unzip

will check for an executable called unzip, and descend into the archivers/unzip subdirectory of the
ports tree to build and install it if it is not found.

The dependency is checked from within the extract target. The target part can be omitted if it is the
same as DEPENDS _TARGET.

Use this variable only if the extraction does not already work (the default assumes

tar) and cannot be made to work using USES=tar, USES=1ha or USES=zip described in
Using USES Macros.

5.10.6. PATCH_DEPENDS

This variable specifies executables or files this port requires to patch. Like the previous, it is a list of
path:dir[:target] tuples. For example,

PATCH_DEPENDS= ${NONEXISTENT}:java/jfc:extract

will descend into the java/jfc subdirectory of the ports tree to extract it.

The dependency is checked from within the patch target. The target part can be omitted if it is the

80

same as DEPENDS _TARGET.

5.10.7. USES

Parameters can be added to define different features and dependencies used by the port. They are
specified by adding this line to the Makefile:

USES= feature[:arguments]

For the complete list of values, please see Using USES Macros.

A USES cannot be assigned after inclusion of bsd.port.pre.mk.

5.10.8. USE_*

Several variables exist to define common dependencies shared by many ports. Their use is optional,
but helps to reduce the verbosity of the port Makefiles. Each of them is styled as USE_*. These
variables may be used only in the port Makefiles and ports/Mk/bsd.*mk. They are not meant for
user-settable options - use PORT_OPTIONS for that purpose.

It is always incorrect to set any USE_* in /etc/make.conf. For instance, setting

o USE_GCC=X.Y

(where X.Y is version number) would add a dependency on gccXY for every port,
including lang/gccXY itself!

Table 8. USE_*

81

Variable Means

USE_GCC The port requires GCC (gcc or g++) to build. Some
ports need a specific, old GCC version, some
require modern, recent versions. It is typically
set to yes (means always use stable, modern GCC
from ports per GCC_DEFAULT in Mk/bsd.default-
versions.mk). This is also the default value. The
exact version can also be specified, with a value
such as 10. GCC from the base system is used
when it satisfies the requested version,
otherwise an appropriate compiler is built from
ports, and CC and CXX are adjusted accordingly.
The :build argument following the version
specifier adds only a build time dependency to
the port.

For example:

USE_GCC=yes # port requires a
current version of GCC
USE_GCC=11:build # port requires
GCC 11 at build time only

USE_GCC=any is deprecated and
should not be used in new
ports

Variables related to gmake and configure are described in Building Mechanisms, while autoconf,
automake and libtool are described in Using GNU Autotools. Perl related variables are described in
Using Perl. X11 variables are listed in Using X11. Using Gnome deals with GNOME and Using KDE
with KDE related variables. Using Java documents Java variables, while Web Applications contains
information on Apache, PHP and PEAR modules. Python is discussed in Using Python, while Ruby in
Using Ruby. Using SDL provides variables used for SDL applications and finally, Using Xfce contains
information on Xfce.

5.10.9. Minimal Version of a Dependency

A minimal version of a dependency can be specified in any *_DEPENDS except LIB_DEPENDS using this
syntax:

p5-Spiffy>=0.26:devel/p5-Spiffy

The first field contains a dependent package name, which must match the entry in the package
database, a comparison sign, and a package version. The dependency is satisfied if p5-Spiffy-0.26 or

82

newer is installed on the machine.

5.10.10. Notes on Dependencies

As mentioned above, the default target to call when a dependency is required is DEPENDS_TARGET. It
defaults to install. This is a user variable; it is never defined in a port’s Makefile. If the port needs a
special way to handle a dependency, use the :target part of *_DEPENDS instead of redefining
DEPENDS_TARGET.

When running make clean, the port dependencies are automatically cleaned too. If this is not
desirable, define NOCLEANDEPENDS in the environment. This may be particularly desirable if the port
has something that takes a long time to rebuild in its dependency list, such as KDE, GNOME or
Mozilla.

To depend on another port unconditionally, use the variable ${NONEXISTENT} as the first field of
BUILD_DEPENDS or RUN_DEPENDS. Use this only when the source of the other port is needed. Compilation
time can be saved by specifying the target too. For instance

BUILD_DEPENDS= ${NONEXISTENT}:graphics/jpeg:extract

will always descend to the jpeg port and extract it.

5.10.11. Circular Dependencies Are Fatal
o Do not introduce any circular dependencies into the ports tree!

The ports building technology does not tolerate circular dependencies. If one is introduced,
someone, somewhere in the world, will have their FreeBSD installation broken almost immediately,
with many others quickly to follow. These can really be hard to detect. If in doubt, before making
that change, make sure to run: cd /usr/ports; make index. That process can be quite slow on older
machines, but it may be able to save a large number of people, including yourself, a lot of grief in
the process.

5.10.12. Problems Caused by Automatic Dependencies

Dependencies must be declared either explicitly or by using the OPTIONS framework. Using other
methods like automatic detection complicates indexing, which causes problems for port and
package management.

Example 41. Wrong Declaration of an Optional Dependency

.include <bsd.port.pre.mk>
Lif exists(${LOCALBASE}/bin/foo)

LIB_DEPENDS= libbar.so:foo/bar
.endif

83

The problem with trying to automatically add dependencies is that files and settings outside an
individual port can change at any time. For example: an index is built, then a batch of ports are
installed. But one of the ports installs the tested file. The index is now incorrect, because an
installed port unexpectedly has a new dependency. The index may still be wrong even after
rebuilding if other ports also determine their need for dependencies based on the existence of
other files.

Example 42. Correct Declaration of an Optional Dependency

OPTIONS _DEFINE= BAR
BAR_DESC= Calling cellphones via bar

BAR_LIB_DEPENDS= libbar.so:foo/bar

Testing option variables is the correct method. It will not cause inconsistencies in the index of a
batch of ports, provided the options were defined prior to the index build. Simple scripts can then
be used to automate the building, installation, and updating of these ports and their packages.

5.11. Slave Ports and MASTERDIR

If the port needs to build slightly different versions of packages by having a variable (for instance,
resolution, or paper size) take different values, create one subdirectory per package to make it
easier for users to see what to do, but try to share as many files as possible between ports. Typically,
by using variables cleverly, only a very short Makefile is needed in all but one of the directories. In
the sole Makefile, use MASTERDIR to specify the directory where the rest of the files are. Also, use a
variable as part of PKGNAMESUFFIX so the packages will have different names.

This will be best demonstrated by an example. This is part of print/pkfonts300/Makefile;

PORTNAME= pkfonts${RESOLUTION}
PORTVERSION= 1.0
DISTFILES= pk${RESOLUTION}.tar.gz

PLIST= ${PKGDIR}/pkg-plist.${RESOLUTION}

.if !defined(RESOLUTION)

RESOLUTION= 300

.else

.if ${RESOLUTION} '= 118 && ${RESOLUTION} != 240 && \
${RESOLUTION} '= 300 && ${RESOLUTION} != 360 && \
${RESOLUTION} '= 400 && ${RESOLUTION} '= 600

.BEGIN:
@${ECHO_MSG} "Error: invalid value for RESOLUTION: \"${RESOLUTION}\""
@${ECHO_MSG} "Possible values are: 118, 240, 300, 360, 400 and 600."
@${FALSE}

.endif

84

.endif

print/pkfonts300 also has all the regular patches, package files, etc. Running make there, it will take
the default value for the resolution (300) and build the port normally.

As for other resolutions, this is the entire print/pkfonts360/Makefile:

RESOLUTION= 360
MASTERDIR= ${.CURDIR}/../pkfonts300

.include "${MASTERDIR}/Makefile"

(print/pkfonts118/Makefile, print/pkfonts600/Makefile, and all the other are similar). MASTERDIR
definition tells bsd.port.mk that the regular set of subdirectories like FILESDIR and SCRIPTDIR are to
be found under pkfonts300. The RESOLUTION=360 line will override the RESOLUTION=300 line in
pkfonts300/Makefile and the port will be built with resolution set to 360.

5.12. Man Pages

If the port anchors its man tree somewhere other than PREFIX, use MANDIRS to specify those
directories. Note that the files corresponding to manual pages must be placed in pkg-plist along
with the rest of the files. The purpose of MANDIRS is to enable automatic compression of manual
pages, therefore the file names are suffixed with .gz.

5.13. Info Files

If the package needs to install GNU info files, list them in INFO (without the trailing .info), one entry
per document. These files are assumed to be installed to PREFIX/INFO_PATH. Change INFO_PATH if
the package uses a different location. However, this is not recommended. These entries contain just
the path relative to PREFIX/INFO_PATH. For example, lang/gcc34 installs info files to
PREFIX/INFO_PATH/gcc34, and INFO will be something like this:

INFO= gcc34/cpp gcc34/cppinternals gce34/q77 ...

Appropriate installation/de-installation code will be automatically added to the temporary pkg-plist
before package registration.

5.14. Makefile Options

Many applications can be built with optional or differing configurations. Examples include choice
of natural (human) language, GUI versus command-line, or type of database to support. Users may
need a different configuration than the default, so the ports system provides hooks the port author
can use to control which variant will be built. Supporting these options properly will make users
happy, and effectively provide two or more ports for the price of one.

85

https://cgit.freebsd.org/ports/tree/print/pkfonts300/
https://cgit.freebsd.org/ports/tree/lang/gcc34/

5.14.1. OPTIONS

5.14.1.1. Background

OPTIONS_* give the user installing the port a dialog showing the available options, and then saves
those options to ${PORT_DBDIR}/${OPTIONS_NAME}/options. The next time the port is built, the
options are reused. PORT_DBDIR defaults to /var/db/ports. OPTIONS_NAME is to the port origin with an
underscore as the space separator, for example, for dns/bind99 it will be dns_bind99.

When the user runs make config (or runs make build for the first time), the framework checks for
${PORT_DBDIR}/${OPTIONS_NAME}/options. If that file does not exist, the values of OPTIONS_* are
used, and a dialog box is displayed where the options can be enabled or disabled. Then options is
saved and the configured variables are used when building the port.

If a new version of the port adds new OPTIONS, the dialog will be presented to the user with the
saved values of old OPTIONS prefilled.

make showconfig shows the saved configuration. Use make rmconfig to remove the saved
configuration.

5.14.1.2. Syntax

OPTIONS_DEFINE contains a list of OPTIONS to be used. These are independent of each other and are
not grouped:

OPTIONS_DEFINE= OPT1 OPT2
Once defined, OPTIONS are described (optional, but strongly recommended):

OPT1_DESC= Describe OPT1
OPT2_DESC= Describe OPT2
OPT3_DESC= Describe OPT3
OPT4 _DESC= Describe 0OPT4
OPT5_DESC= Describe OPT5
OPT6_DESC= Describe OPT6

ports/Mk/bsd.options.desc.mk has descriptions for many common OPTIONS. While often useful,
override them if the description is insufficient for the port.

When describing options, view it from the perspective of the user: "What
functionality does it change?" and "Why would I want to enable this?" Do not just
(r) repeat the name. For example, describing the NLS option as "include NLS support"
- does not help the user, who can already see the option name but may not know
what it means. Describing it as "Native Language Support via gettext utilities" is
much more helpful.

o Option names are always in all uppercase. They cannot use mixed case or

86

https://cgit.freebsd.org/ports/tree/dns/bind99/

lowercase.

OPTIONS can be grouped as radio choices, where only one choice from each group is allowed:

OPTIONS_SINGLE= Sa1
OPTIONS_SINGLE_SG1= OPT3 OPT4

ﬁ There must be one of each OPTIONS_SINGLE group selected at all times for the
options to be valid. One option of each group must be added to OPTIONS_DEFAULT.

OPTIONS can be grouped as radio choices, where none or only one choice from each group is
allowed:

OPTIONS_RADIO= RG1
OPTIONS_RADIO_RG1= OPT7 OPT8

OPTIONS can also be grouped as "multiple-choice" lists, where at least one option must be enabled:

OPTIONS_MULTI= MG1
OPTIONS_MULTI_MG1= OPT5 OPT6

OPTIONS can also be grouped as "multiple-choice" lists, where none or any option can be enabled:

OPTIONS_GROUP= Ga1
OPTIONS_GROUP_GG1= OPT9 OPT10

OPTIONS are unset by default, unless they are listed in OPTIONS_DEFAULT:
OPTIONS _DEFAULT= OPT1 OPT3 OPT6

OPTIONS definitions must appear before the inclusion of bsd.port.options.mk. PORT_OPTIONS values
can only be tested after the inclusion of bsd.port.options.mk. Inclusion of bsd.port.pre.mk can be
used instead, too, and is still widely used in ports written before the introduction of
bsd.port.options.mk. But be aware that some variables will not work as expected after the inclusion
of bsd.port.pre.mKk, typically some USE_* flags.

Example 43. Simple Use of OPTIONS

OPTIONS_DEFINE= FOO BAR
OPTIONS_DEFAULT=FO0

FOO_DESC= Option foo support
BAR_DESC= Feature bar support

87

Will add --with-foo / --without-foo
FOO_CONFIGURE _WITH= foo
BAR_RUN_DEPENDS= bar:bar/bar

.include <bsd.port.mk>

Example 44. Check for Unset Port OPTIONS

.if | ${PORT_OPTIONS:MEXAMPLES}
CONFIGURE_ARGS+=--without-examples
.endif

The form shown above is discouraged. The preferred method is using a configure knob to
really enable and disable the feature to match the option:

Will add --with-examples / --without-