
JavaHelp 2.0
Specification
Final Release

Editor: Roger Brinkley (roger.brinkley@sun.com)

March 13, 2003
Public Review

Copyright © 20001Sun Microsystems, Inc.

Abstract
This is the proposed final release of the JavaHelp APIs proposed in JSR-097.

There is a change history in section Appendix E on page 109 .

Java Software

Sun Microsystems Inc. 2 JavaHelp V2.0 Specification

Sun Microsystems, Inc.
Copyright 2003 Sun Microsystems, Inc.

901 San Antonio Road, Palo Alto, California 94303 U.S.A.

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you at no charge a nonexclusive, nontransfer-
able, worldwide, limited license (without the right to sublicense) under SUN’s intellectual
property rights that are essential to practice the JavaHelp 2.0 Specification “Specification”) to
use the Specification for internal evaluation purposes only. Other than this limited license, you
acquire no right, title or interest in or to the Specification and you shall have no right to use the
Specification for productive or commercial use.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR
52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR
227.7202-1(a).

SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY
OF THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMIT-
ED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR
ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, JavaSoft, JavaBeans, JavaHelp, JDK, Java, HotJava,
HotJava Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows,
PC-NFS, EmbeddedJava, PersonalJava, SNM, SunNet Manager, Solaris sunburst design, Sol-
stice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is The Computer,
ToolTalk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop,
XView, Java WorkShop, the Java Coffee Cup logo, and Visual Java are trademarks or regis-
tered trademarks of Sun Microsystems, Inc. in the United States and other countries.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPO-
GRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMA-
TION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF
THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS
AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED
IN THIS PUBLICATION AT ANY TIME.

Java Software
Table of Contents
1 Introduction . 6

1.1 Status of this Specification . 6

1.2 Change in format . 6

1.3 How to read this Specification . 6

1.4 Related Documents . 7

1.5 Further Reading . 7

1.5.1 JavaHelp Software Mailing Lists . 7

1.6 Your Feedback . 7

2 Overview . 9

2.1 Introduction . 9

2.2 Features . 9

2.3 Supported Platforms . 10

2.4 The Specification . 10

2.4.1 API Structure . 10

2.5 Main Concepts . 11

2.5.1 HelpSet . 11

2.5.1.1 HelpSet File 11

2.5.1.2 Help Views and Help Navigators 11

2.5.1.2.1 Standard Help Views and Help Navigators . 12

2.5.1.3 Map File 12

2.5.1.4 Content files 12

2.5.2 HelpBroker . 12

2.5.3 URL Protocols . 13

2.5.4 Search . 13

2.5.5 Merging . 13

2.5.6 Extensibility . 13

2.5.7 Updating Help Information . 14

2.5.8 File Formats . 14

2.6 An Example . 14

3 File Formats . 16

3.1 Overview . 16

3.2 HelpSet File . 17

3.2.1 Format . 17
Sun Microsystems Inc. 1 JavaHelp V2.0 Specification

Java Software
3.2.2 Processing Instructions . 18

3.2.3 HelpSet properties . 18

3.2.4 ID Map Section . 18

3.2.4.1 Map Example 18

3.2.5 Navigational Views Section . 19

3.2.5.1 View Example 19

3.2.6 SubHelpSet Section . 20

3.2.7 Presentation Section . 21

3.2.7.1 Presentation Example 22

3.2.8 Implementation Section . 23

3.2.8.1 Implementation examples 23

3.3 Map Files . 24

3.4 Table of Contents . 24

3.4.1 Table of Contents Example . 26

3.5 Index . 27

3.5.1 Index Example . 27

3.6 Glossary . 28

3.6.1 Glossary Example . 28

3.7 Favorites . 28

3.7.1 Favorites Example . 29

3.8 Help Content . 30

3.9 Search Database . 30

4 Localization . 31

4.1 A Network Environment . 31

4.2 Localized Documents . 31

4.3 Full Text Search . 31

4.4 More Details . 31

5 JavaHelpTM 1.0 - Customization . 32

5.1 Introduction . 32

5.2 Help Broker . 32

5.3 Content Viewers . 32

5.4 NavigatorView and JHelpNavigator . 32

5.4.1 View-Specific Knowledge . 33

5.4.2 Different Formats . 33

5.4.3 Different Presentations . 33
Sun Microsystems Inc. 2 JavaHelp V2.0 Specification

Java Software
5.4.4 Two Examples of Custom Views . 33

5.5 Search Engines . 34

5.6 Key-Data Map . 35

5.7 Using new URL protocols . 35

6 JavaHelpTM 1.0 - JavaBeans Help data . 36

6.1 Introduction . 36

6.2 Help Information . 36

6.3 Mechanism . 37

6.4 An Example: . 37

6.4.1 Manifest and JAR File . 37

6.4.2 The HelpSet File . 37

6.4.3 The Help Map . 38

6.5 An Alternative Arrangement . 38

6.5.1 Manifest and JAR file . 38

6.5.2 The HelpSet File . 38

6.5.3 The Help Map . 39

7 Server Based JavaHelp . 40

7.1 Java Server Pages . 40

7.2 Server Based JavaHelp Architecture . 40

7.3 JavaHelp Server Components . 41

7.3.1 JavaHelp Server Bean . 41

7.3.1.1 Usage 41

7.3.2 JavaHelp JSP Tag Extensions . 42

7.3.2.1 Validate Usage 44

7.3.3 Navigator Scripting Variables . 44

7.3.3.1 Navigator Variables 44

7.3.3.1.1 Navigator Variable Usage . 45

7.3.3.2 tocItem Variables 45

7.3.3.2.1 tocItem Usage . 45

7.3.3.3 indexItem Variables 46

7.3.3.4 indexItem Usage 46

7.3.3.5 searchItem Variables 46

7.3.3.5.1 SearchItem Usage . 47

8 Presentation of Help Content . 48

8.1 Introduction . 48
Sun Microsystems Inc. 3 JavaHelp V2.0 Specification

Java Software
8.2 Presentation Class . 48

8.2.1 Presentation Extensions . 49

8.2.1.1 Popup 49

8.2.1.2 Window Presentations 49

8.2.1.2.1 Main Window . 50

8.2.1.2.2 Secondary Window . 50

8.3 Help Author Presentation Control . 50

8.4 Activating Help in Presentations . 50

8.4.1 Field-level Context-sensitive Help . 52

8.4.2 Window Level Context-Sensitive Help . 53

8.4.3 User initiated context-sensitive help . 55

8.4.4 System initiated context-sensitive help . 56

8.4.5 Navigator . 58

8.4.6 Viewer . 59

9 Toolbar . 62

9.1 HelpAction Interface . 62

9.2 AbstractHelpAction Class . 62

9.3 HelpAction Extensions . 62

9.4 Supplied AWT/Swing HelpActions . 63

10 Context Sensitive Help . 64

10.1 Context-Sensitive Help . 64

10.1.1 Defining the ID-URL map . 64

10.1.2 Assigning an ID to Each Visual Object . 64

10.1.3 Enabling a Help Action . 65

10.1.4 Dynamic ID Assignment . 66

10.1.4.1 Example Usage 67

10.2 Help Support for JDialogs . 67

11 Content Search . 68

11.1 Search API . 68

11.2 Search Database Creation . 68

11.2.1 Stopwords . 68

11.2.2 ConfigFile Directives . 69

11.3 Search Database Use . 69

12 Merge . 70

12.1 Introduction . 70
Sun Microsystems Inc. 4 JavaHelp V2.0 Specification

Java Software
12.2 Merging Rules . 70

12.3 The API . 71

12.4 Merging TOCs . 71

12.5 Merging Indices . 72

12.6 Merging Glossaries . 72

12.7 Merging Favorites . 72

12.8 Merging Full-Text Search Databases . 72

12.9 Overriding Mergetype . 72

12.10 Examples . 73

12.10.1 Example: Append Merge . 73

12.10.2 Example: Sort Merge . 74

12.10.3 Example: Unite-Append Merge . 76

13 JavaHelp Class Structure . 78

13.1 Packages . 78

13.2 API Structure . 78

13.2.1 Basic Content Presentation . 79

13.2.2 Detailed Control and Access . 79

13.2.3 Extensibility . 79

13.2.4 Swing components . 80

13.2.5 Context Sensitive Help . 81

13.2.6 Search . 81
Sun Microsystems Inc. 5 JavaHelp V2.0 Specification

Java Software
1 Introduction

JavaHelpTM is an online help system specifically tailored to the Java platform. JavaHelp con-
sists of a fully featured, highly extensible specification and an implementation of that specifi-
cation written entirely in the Java language.

JavaHelp enables Java developers to provide online help for:

• Applications (both network and stand-alone)
• Server based applications
• Applets
• JavaBean components
• Desktops
• HTML pages

1.1 Status of this Specification

This document describe the JavaHelp 2.0 specification.

We follow the Java Community Process for the development and revision of Java technology
specifications. The JCP is an open and inclusive process that produces high-quality specifica-
tions in “Internet-time”. Through this process the critical feedback from all reviewers helps us
transform early specifications into a high quality final specifications that satisfied the needs of
the user community. The release of this draft specification is part of this process.

When JavaHelp V1.0 Specification was released we expected the specification to continue to
be extended in future updates. This is a major update to the JavaHelp V1.0 Specification.

1.2 Change in format

The JavaHelp V1.0 Specification was written and maintained in HTML. For maintenance and
ease in creating PDF versions of this Specification we have chosen to develop this version of
the specification in Frame. Additionally we have changed the format to be more consistent with
a variety of JSR that have been posted. During the conversion from the previous format to the
new format every effort was made to preserve the content of the JavaHelp V1.0 Specification.
Minor changes were made to improve the readability and accuracy of the document. In all cases
the original intent of the V1.0 Specification was maintained.

1.3 How to read this Specification

There are two parts of the documents. The first set is the actual specification that describes the
JavaHelp API and its use. Also included are several related sections that, while not technically
part of the specification, help in understanding it. These documents describe aspects of Sun’s
reference implementation.

We suggest that you begin by reading the specification overview section 2 on page 9. In order
to make the JavaHelp system features more concrete and easy to understand, a number of sce-
narios are explained in section Apendix A on page 82. These scenarios describe some of the
different ways the JavaHelp system can be used in Java applications.
Sun Microsystems Inc. 6 JavaHelp V2.0 Specification

http://jcp.org

Java Software
You may want to complement your reading of this specification by exploring the JavaHelp Sys-
tem 2.0 Reference Implementation section Appendix B on page 104 which corresponds to this
specification. This reference implementation also supports some features that are useful for on-
line documentation systems but that we have judged to not be appropriate for inclusion in the
specification at this time. The release also includes examples of documentation and applica-
tions that use this specification.

1.4 Related Documents

• JavaHelp 2.0 - Scenarios
• JavaHelp System 2.0 Reference Implementation
• JavaHelp 2.0 - Relaxation Searching

1.5 Further Reading

Up-to-date public information on JavaHelp technology, including our latest presentations at
public forums, is available at our home page at http://java.sun.com/products/javahelp.

Further information on Java technology can be found at Sun’s Java web site at http://ja-
va.sun.com.

1.5.1 JavaHelp Software Mailing Lists

JAVAHELP-INTEREST: We maintain a mailing list as a JavaHelp community resource
where interested parties can post and exchange information and inquiries about JavaHelp in a
public forum. Subscribers to this list can receive inquiries either as they are posted or in regular
digest versions.

To subscribe, send mail to listserv@javasoft.com. In the body of the message type SUB-
SCRIBE JAVAHELP-INTEREST

To view archives, select advanced subscription features, or to unsubscribe: http://archives.ja-
va.sun.com/archives/javahelp-interest.html

JAVAHELP_INFO: We maintain a mailing list for occasional information about JavaHelp
software updates and events from the JavaHelp team. To subscribe, send mail to listserv@ja-
vasoft.com. In the body of the message type SUBSCRIBE JAVAHELP-INFO

1.6 Your Feedback

We encourage your feedback at

jsr-97-comments@sun.com.

We thank you for your help in making this, and future specifications, meet your needs!
Sun Microsystems Inc. 7 JavaHelp V2.0 Specification

http://java.sun.com/products/javahelp
http://java.sun.com
http://java.sun.com
http://archives.java.sun.com/archives/javahelp-interest.html
http://archives.java.sun.com/archives/javahelp-interest.html
mailto:jsr-97-comments@sun.com

Java Software
2 Overview

2.1 Introduction

This section is an overview of the JavaHelp specification.

2.2 Features

The main features of JavaHelp are:

Help Viewer The standard JavaHelp viewer consists of a toolbar and two panes:

Content pane
Displays help topics formatted using HTML.

Navigation pane
A tabbed interface that allows users to switch
between the table of contents, index, and full text
search displays.

Table of contents XML-based. Collapsible/expandable display of topics in the help
system. Supports unlimited levels and merging of multiple TOCs.

Index XML-based. Supports merging of multiple indexes.

Glossary XML-based. Based on index file format. Used for short technical
descriptions

Favorites XML-based. Collapsible/expandable display of user’s favorite top-
ics.

Full text search The full text of the content is searchable. Different engines can be
used.

Compression and
encapsulation

Encapsulation and compression are optional. Uses the standard
Java JAR format to encapsulate the entire help system into a sin-
gle, optionally compressed file.

Embedded help
windows

Help windows (individually or in combination) can be embedded
directly into application interfaces.

Customization JavaHelp is designed to permit great flexibility in customizing both
the user interface and functionality.

The JavaHelp System 2.0 Reference Implementation section Appendix B on page 104 adds the
following to this list:

Flexible Search
Engine

The full text of the content can be searched with a flexible search
engine that supports multi-word queries.
Sun Microsystems Inc. 8 JavaHelp V2.0 Specification

Java Software
2.3 Supported Platforms

JavaHelp 2.0 is an Optional Package for the Java 2 platform.

2.4 The Specification

The JavaHelp specification has two main parts:

API The interface between the application and the help system

File formats Formats of the files that are part of the help system (HelpSet, table-
of-contents, map, index, search database)

2.4.1 API Structure

The classes and methods in JavaHelp 1.0 can be partitioned depending on the tasks so that cli-
ents of the API need only use as much as they need. The following are the most useful collec-
tions:

HelpSet access A number of classes provide complete access to a HelpSet collec-
tion. This includes classes to control the navigation of online con-
tent (NavigatorView), the mapping of identifiers to content files
(Map) and access to HelpSet attributes including the ability to
locate, create and merge HelpSets (HelpSet).

Basic Content Pre-
sentation

A set of classes that provide a generic presentation model for a
given platform. A HelpBroker is used to present a HelpSet to the
user using the default HelpBroker. Context sensitive help is avail-
able through CSH when coupled with a HelpBroker.

Swing Classes JavaHelp 1.0 defines Java Foundation Class components for Navi-
gators, Content Viewer and Help Viewer which can be embedded
into an Application if desired. Custom Navigators are also pre-
sented to the API as JFC components.

Full-Text Search The classes in the javax.help.search package provide a simple
API for full-text search that can also be used independently of help
applications.

JSP Tag Extensions A set of classes to provide access to HelpSet collections through
Java Server Pages.

Popups and Active
Content

PopUps can be obtained by embedding lightweight Java compo-
nents in HMTL pages. Active content (e.g. a button that when
pressed can act on the application) can be implemented using the
same mechanism.
Sun Microsystems Inc. 9 JavaHelp V2.0 Specification

http://java.sun.com/java2

Java Software
2.5 Main Concepts

This section describes the fundamental concepts in the specification. More details are available
in other parts of this specification and in the javadoc comments of the classes.

2.5.1 HelpSet

 A HelpSet is a collection of help content files section 2.5.1.4 on page 12 (topics), navigational
views section 3.2.5 on page 19, and map section 2.5.1.3 on page 12information. A HelpSet can
contain other HelpSets which are merged section 2.5.5 on page 13 together.

2.5.1.1 HelpSet File

The HelpSet file section 3.2 on page 17 describes a HelpSet and contains:

• Title and other global information
• Map section 3.3 on page 24 information that associates topic IDs with topic files
• One or more navigational views on the content

2.5.1.2 Help Views and Help Navigators

JavaHelp provides “context views” for navigating through content information; for example,
most HelpSets will have a view displaying a Table of Contents. A view has a name, a Naviga-
torView Class identifying its behavior, some information (e.g. URLs, arguments) used by the
instance, and a JHelpNavigator which is a GUI component that presents the view to the user.
Navigational views are visible to the JavaHelp APIs and the client can request to make a spe-
cific view active.

The view's class defines what data it reads, its format, how it will be presented visually, and it
also defines the merging rulessection 12.2 on page 70. A view is a subclass of NavigatorView
section 5.4 on page 32. The createNavigator() method of a view returns a component that is
used to graphically present the view; for the standard views section 2.5.1.2.1 on page 11 this
component is a Swing component section 13.2.4 on page 80, specifically, a subclass of JHelp-
Navigator.

Any JavaHelp implementation must support the standard NavigatorView classes, but a Help-
Set may include views with other classes, as long as they are available (technically, as long as
their definitions are available to the ClassLoader instance of the HelpSet). In many cases this
means they are either in the implementation of JavaHelp, in the CLASSPATH, or they are list-
ed in the ARCHIVE attribute of an APPLET.

2.5.1.2.1 Standard Help Views and Help Navigators

All JavaHelp implementations must provide the following classes:

javax.help.TOCView
javax.help.JHelpTOCNavigator

NavigatorView and JHelpNavigator for parsing and
presenting Table of Contents data.

javax.help.IndexView
javax.help.JHelpIndexNavigator

The NavigatorView and JHelpNavigator for parsing
and presenting Index data.
Sun Microsystems Inc. 10 JavaHelp V2.0 Specification

Java Software
The formats used by the TOC, Index, Glossary and Favorites Navigators are described in sec-
tion 3 on page 16. The Search Navigator interacts with its data through a searchengine that ex-
tends the SearchEngine class ; one of the Search View arguments is the class name of the search
engine, the rest of the data is passed directly to the search engine.

2.5.1.3 Map File

Applications (or navigational data) do not usually directly reference content files, instead they
usually reference them through string identifiers (IDs). This use of IDs insulates content devel-
opment from application development. Identifiers are mapped to content files in a mapfile.
Multiple map files can be combined within a HelpSet, but an identifier must be unique within
a HelpSet in the resulting combined map.

2.5.1.4 Content files

Help information (topics) is described through a collection of URLs. These URLs may be files,
may be within a JAR file, or they may be generated dynamically by the server.

Content information is presented depending on its (MIME) type. JavaHelp system implemen-
tations are required to provide viewers for HTML3.2 content, but there is a registration mech-
anism in JHelpContentViewer that is built upon the corresponding mechanism in JEditorPane
in the Swing package.

2.5.2 HelpBroker

A Help Broker object is the abstraction of the presentation to a HelpSet. An application can use
a HelpBroker object to interact programmatically with the presentation of information. The de-
fault HelpBroker implementation uses a Swing JFrame, but other implementations are possible
(for example, embedding help objects).

2.5.3 URL Protocols

JavaHelp authors can use a number of protocols in the URLs when they are used in the HelpSet
file and map files. The specific protocols available depend on the underlying platform. For ex-
ample, JDK1.1 provides file:, http:, ftp:, while Java 2 adds the jar: protocol which pro-
vides access to files within a JAR file. Specific implementations may support additional URL
formats.

javax.help.GlossaryView
javax.help.JHelpGlossaryNaviga-
tor

NavigatorView and JHelpNavigator for parsing and
presenting Glossary data.

javax.help.FavoritesView
javax.help.JHelpFavoritesNaviga-
tor

NavigatorView and JHelpNavigator for parsing and
presenting Favorites data.

javax.help.SearchView
javax.help.JHelpSearchNavigator

The NavigatorView and JHelpNavigator for interact-
ing with a search engine using the javax.help.search.*
classes.
Sun Microsystems Inc. 11 JavaHelp V2.0 Specification

Java Software
2.5.4 Search

JavaHelp contains a simple search API in the package javax.help.search. This package pro-
vides creation and access to the search databases used by JavaHelp. Different search engines
will be identified as subclasses of javax.help.search.SearchEngine. The search engine included
in the JavaHelp reference implementation is com.sun.java.help.search.DefaultSearch-
Engine.

2.5.5 Merging

In simple applications, the help data may be described in a single HelpSet file. Other situations
are best described as a collection of HelpSets, for example:

• An application can merge help information available locally on a user’s disk, with
information on a web site

• Product suites can merge help information when constituent applications are installed
• HelpSets from an application’s constituent Beans section 6 on page 36can be merged

for a unified presentation

JavaHelp 1.0 provides a basic mechanism for merging the contents of several HelpSets, the re-
sulting HelpSet merges the map information and the navigational views. See section 12 on page
70 for additional information.

2.5.6 Extensibility

The JavaHelp system is designed so it can be extended in several dimensions:

• The JHelpContentViewer registration mechanism can be used to provide new content
viewers

• The HelpBroker registration mechanism can be used to provide new default
HelpBroker

• The NavigatorView and JHelpNavigator mechanisms can be used to provide new file
formats, or new presentations

• The javax.help.search classes can be used to replace search engines.

For more details see section 5 on page 32.

2.5.7 Updating Help Information

It is often important to be able to update a product’s online help after it has been released. The
JavaHelp system supports this in several ways--it is possible to entirely replace the information
(if in a JAR), or replace parts of it (if spread over multiple files).

Because you can refer to multiple maps in the HelpSet file, the JavaHelp system provides ad-
ditional flexibility in this update process. The HelpSet file can extend these maps, making it
possible to modify the mapping without modifying any existing map files (which may be inside
a JAR file). Finally, since the URL protocols support remote access, if the application is run-
ning in a connected environment, it is possible to keep some information remotely.

2.5.8 File Formats

The JavaHelp system specifies the following file formats:
Sun Microsystems Inc. 12 JavaHelp V2.0 Specification

Java Software
• HelpSet encapsulation and compression using JAR files
• HTML topic files
• HelpSet file
• Map files
• Standard navigation view formats (TOC, index, search)

More information is available in the section 3 on page 16.

2.6 An Example

The following is an example of a HelpSet file.

<?xml version='1.0' encoding='ISO-8859-1' ?>
 <!DOCTYPE helpset
 PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version 2.0//EN"
 "http://java.sun.com/products/javahelp/helpset_2_0.dtd">

 <helpset version="1.0">

<!-- the title for the helpset -->
<title>An Example</title>

<!-- maps -->
<maps>
 <homeID>top</homeID>
 <mapref location="jar:file:/c:/Program Files/JWS3.0/JWS3.0.jar!/TheMap.map" />
</maps>

<!-- A TOC view -->
<view>
 <name>TOC</name>
 <label>Table Of Contents</label>
 <type>javax.help.TOCView</type>
 <data>jar:file:/c:/Program Files/JWS3.0/JWS3.0.jar!/TOC.xml</data>
</view>

<!-- Another TOC view; note that it has a different name -->
<view>
 <name>LocalTOC</name>
 <label>Appendix One</label>
 <type>javax.help.TOCView</type>
 <data>jar:file:/c:/Program Files/JWS3.0/JWS3.0.jar!/LocalTOC.xml</data>
</view>

<!-- An Index view -->
<view>
 <name>Index</name>
 <label>Index</label>
 <type>javax.help.IndexView</type>
 <data>jar:file:/c:/Program Files/JWS3.0/JWS3.0.jar!/Index.xml</data>
</view>

<!-- A Search view; note the engine attribute -->
<view>
 <name>Search</name>
 <label>Search</label>
 <type>javax.help.SearchView</type>
 <data engine="com.sun.java.help.search.SearchEngine">

 jar:file:/c:/Program Files/JWS3.0/JWS3.0.jar!/SearchData
 </data>
Sun Microsystems Inc. 13 JavaHelp V2.0 Specification

Java Software
</view>
 </helpset>

The HelpSet file starts a DOCTYPE identifying the DTD for the file. The DTD is versioned to
allow for future changes. Next follows the title of the HelpSet.

The next section provides information about ID->content file mapping. An ID is given indicat-
ing what information within the HelpSet to show by default. Next a mapref tag indicates where
to locate the map. In our case the mapfile is contained within a JAR file on the local disk.

The next five sections of the HelpSet file provide information about different views of the con-
tent information. The first view, “TOC”, is in a local disk. The next section is a different Table
of Contents view, (“LocalTOC”), that uses the same information as the first view, while the
next section is an index on the local disk. The next section defines search information and the
last two section define a Glossary view and Favorites view.
Sun Microsystems Inc. 14 JavaHelp V2.0 Specification

Java Software
3 File Formats

3.1 Overview

The JavaHelp system defines the file formats for the meta data files: HelpSet file, Map file, and
the data for the standard TOC and Index views. The file formats used in JavaHelp are based on
industry standards:

• The HelpSet (help content and meta information) is encapsulated and compressed using
the JAR (Java Archive) format.

• Map, table of contents and index file models are described in XML.
• The HelpSet file is based on the Extended Markup Language (XML) as defined by the

World Wide Web Consortium (http://w3c.org/XML/).
• Localization is done following the I18N Java conventions.

JavaHelp provides for an extensible set of navigational types, but predefines a few types. The
standard types are:

• javax.help.TOCView for the Table of Contents.
• javax.help.IndexView for the Index.
• javax.help.SearchView for the Search.
• javax.help.GlossaryView for the Glossary.
• javax.help.FavoritesView for the Favorites

The typical files involved in a HelpSet are:

• HelpSet file: Identifies the map, and navigational views (e.g. TOCs, indexes and search
database files).

• Map file(s): Defines the map that associates topic IDs used by the application to refer
to HTML topic files.

• Table of contents: Defines the table of contents entries, their structure, and the IDs to
which they map

• Index: Defines the index entries and the IDs to which they map
• Glossary: Defines the glossary entries and the IDs to which they map
• Search Database: The search database searched by the search engine. The default

search database is created using the JavaHelp system jhindexer command.
• Content: The HTML topic files that provide information to help users

Document Type Definitions (DTDs) for HelpSet, Map, TOC View data, Index View data,
Glossary View data and Favorites View data are included in this specification and can be used
for validation. In each of these cases, the valid documents are those valid XML documents in
conformance with the DTD except that the DOCTYPE section must not have any inner DTD
subset (this is the same restriction used in the W3C SMIL recommended specification).

JAR is used to encapsulate and compress a HelpSet into a single file. Encapsulation and com-
pression are not required, but recommended in most production environments.
Sun Microsystems Inc. 15 JavaHelp V2.0 Specification

Java Software
3.2 HelpSet File

The HelpSet file is localized following the same naming conventions used with ResourceBun-
dle see section 4 on page 31. Once a HelpSet file for a given locale has been found, no addi-
tional localization searches are needed, which is very important in a networked environment.

3.2.1 Format

HelpSet files are encoded in an XML-based syntax; The DTD is dtd/helpset_2_0.dtd. The top
level tag is <helpset>. A version attribute is optional, when present its value must be "1.0" or
“2.0”.

Tag Description
Allowed

In
Body Attributes

helpset Helpset definition top-level none xml:lang=”lang”
Language for this item

version=”1.0”|”2.0”
version

The HelpSet file is organized into sections within the <helpset> tag. There is a section for ID
maps, sections for the navigational views, and a final section for subhelpsets. The general out-
line of a HelpSet file is:

<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE helpset PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version 2.0//EN"
 "http://java.sun.com/products/javahelp/helpset_2_0.dtd">

<helpset version="2.0">

<!-- Global properties -->
<title>My Title</title>

<!-- maps section -->
<maps>
 <homeID>my homeID</homeID>
 <mapref location="url"/>
</maps>

<!-- Zero or more View sections -->
<view>
 <name>TOC</name>
 <type>javax.help.TOCView></type>
 <data>TOC.xml</data>
</view>

<!-- Optional subHelpSet section >
 <subhelpset location="file:/c:/Foobar/HelpSet1.hs"/>
</helpset>

Whenever a relative URL specification appears in a HelpSet, it is to be interpreted relative to
the URL of the HelpSet (note that the constructor for a HelpSet takes a URL).
Sun Microsystems Inc. 16 JavaHelp V2.0 Specification

Java Software
3.2.2 Processing Instructions

The reference implementation ignores the Processing Instructions.

3.2.3 HelpSet properties

A HelpSet has a title that is used mostly in the presentation.

Tag Description
Allowed

In
Body Attributes

title Title of the Help-
Set

helpset Actual title none

3.2.4 ID Map Section

The second section of a HelpSet file contains information on the mapping of IDs to URLs used
for context sensitive help. The homeId tag provides the default entry to present when a HelpSet
is first shown. The mapref tag provides a reference to a map file.

Tag Description
Allowed

In
Body Attributes

maps Map definition helpset empty none

homeID Default ID of the
HelpSet

maps ID string none

mapref URL to map maps data location
relative to
HelpSet

none

Finally, an ID Map section corresponding to a Bean will want to include a topic ID correspond-
ing to the BeanInfo.getHelpId(). If there is a single Bean for this HelpSet file, the value of <ho-
meID> could be used. If several Beans share the HelpSet file, several topic IDs are needed

3.2.4.1 Map Example

The following is an example of a map definition in a HelpSet file:

<map>
 <mapref>Map.jhm</mapref>
 <mapref>jar:http://www.sun.com/devpro/JWS3.0Encyclopedia.jar!/Map.jhm</mapref>
</map>

3.2.5 Navigational Views Section

The largest sections of a HelpSet file describe the navigational views, which include tables of
contents, indices, glossary, favorites, and search. There are three mandatory tags for each view:
<label>, <name>, and <type>. Additionally, most views will define <data>.
Sun Microsystems Inc. 17 JavaHelp V2.0 Specification

Java Software
Tag Description
Allowed

In
Body Attributes

view View definition helpset none xml:lang=”lang”
Language for
this item

mergetype=”type”
name of a
Merge class

name a name identify-
ing the view

view a name identi-
fying the view

none

label a label to show in
the presentation

view text for the
label

none

image image to show in
the presentation

view id of the image none

type a subclass of
NavigatorView

view name of class none

data URL spec view text of spec engine=”string”
a class
implementing
Search Engine

The language specified in the xml:lang attribute of name must not be different that of the view,
if that was given explicitly.

3.2.5.1 View Example

The following is an example of a view section in a HelpSet file:

<view mergetype=”javax.help.UniteAppendMerge>
 <name>TOC</name>
 <label>Table of Contents</name>
 <type>javax.help.TOCView</type>
 <data>toc.xml</data>
</view>

3.2.6 SubHelpSet Section

A HelpSet file can statically include other HelpSets using the <subhelpset> tag. The HelpSets
indicated using this tag are merged automatically into the HelpSet where the tag is included. If
the URL spec refers to a non-existing file, the subhelpset tag is silently ignored; this permits an
Sun Microsystems Inc. 18 JavaHelp V2.0 Specification

Java Software
enclosing HelpSet to refer to subhelpsets that may or not

Tag Description
Allowed

In
Body Attributes

subhelpset Static subHelp-
Set to merge

helpset empty location=”string”
URL spec

be installed. More details about merg-

ing can be found insection 12 on page 70.

3.2.7 Presentation Section

The presentation section defines the presentations of help information that can be controlled by
the help author. There is only one mandatory tag for each presentation: <name>.

Tag Description
Allowed

In
Body Attributes

presenta-
tion

Presentation defi-
nition

helpset none xml:lang=”lang”
Language for
this item

default=”true|false”
Default
presentation
for this
helpset; the
default is false

displayviews=”true|false”
Display the
navigational
views of this
helpset; the
default is true

displayviewim-
ages=”true|false”

Display the
navigational
views of this
helpset; the
default is true

name a name identify-
ing the presenta-
tion

presenta-
tion

a name identify-
ing the presenta-
tion

none
Sun Microsystems Inc. 19 JavaHelp V2.0 Specification

Java Software
For additional information on presentations see section 8.2 on page 48.

3.2.7.1 Presentation Example

The following is an example of a presentation section in a HelpSet file:

<presentation default=true>
 <name >main window</name>
 <size width=400 height=400 />
 <location x=200 y=200 />
 <title>Project X Help</title>
 <toolbar>
 <helpAction>javax.help.BackAction</helpAction>
 <helpAction>javax.help.ForwardAction</helpAction>
 </toolbar>
</presenation>

size the size of presen-
tation

presenta-
tion

none width=”xxx”
Desired width
in pixels

height=”xxx”
Desired
height in
pixels

location the location of the
presentation

presenta-
tion

none x=”xxx”
the x
coordinate

y=”xxx”
the y
coordinate

title the title of the
presentation

presenta-
tion

title none

image image of the pre-
sentation

presenta-
tion

id of the image none

toolbar indicates a tool-
bar is to be
included

presenta-
tion

none none

helpaction an individual help
action.

toolbar class name of the
HelpAction. Must
be of type
javax.help.HelpA
ction

image=”string”
destination ID

Tag Description
Allowed

In
Body Attributes
Sun Microsystems Inc. 20 JavaHelp V2.0 Specification

Java Software
This example would be used as the default presentation. The size would be 400,400 at the lo-
cation 200,200. Since this is a main window the title of the window would be “Project X Help”
and the toolbar would contain the back and forward buttons.

Another example of a presentation used for secondary windows follows:

<presentation default=true>
 <name>secondary window</name>
 <size width=200 height=200 />
</presenation>

In this example the only attribute set is the size of 200,200. Otherwise the implementation de-
faults are used.

3.2.8 Implementation Section

The implementation section creates a per HelpSet registry to provide key data mapping to de-
fine the HelpBroker class to use in the HelpSet.createHelpBroker method and to determine the
content viewer to use for a given MIME type. For more information on setting these attributes
programatically see

Tag Description
Allowed

In
Body Attributes

impl Implementation
definition

helpset none none

helpsetregistry Registers the
default HelpBro-
ker class

impl none helpbrokerclass=”class”
(required) class
name, must
implement
HelpBroker

viewerregistry Registers a
viewer class for
given mime type

impl none viewertype=”mime/type”
(required) mime
type

viewerclass=”class”
(required) class
name

 section 5.6 on page 35.

3.2.8.1 Implementation examples

The following is an example of a implementation section in a HelpSet file:

<impl>
<helpsetregistry helpbrokerclass=”javax.help.DefaultHelpBroker” />
<viewerregistry viewertype=”text/html” viewerclass=”com.sun.java.help.impl.CustomKit” />
<viewerregistry viewertype=”text/xml” viewerclass=”com.sun.java.help.impl.CustomXMLKit” />

</impl>
Sun Microsystems Inc. 21 JavaHelp V2.0 Specification

Java Software
3.3 Map Files

Each map file provides a mapping of topic IDs to URLs. Map files are encoded in an XML-
based syntax; The DTD is dtd/map_2_0.dtd. The top level tag is <map>. A version attribute is
optional, when present its value must be "1.0" or “2.0”.

The main tag is mapID relating a topic ID and a URL specification. Relative URL specifica-
tions are to be resolved against the absolute URL for the map file.

A Map can contain only the following two tags:

Tag Description
Allowed

In
Body Attributes

map A Map top-level empty xml:lang=”lang”
Language for this item

version=”1.0”|”2.0”
 version

mapID An individual
map entry

empty map xml:lang=”lang”
Language for this item

target=”string”
ID

url=”string”
URL spec

The following is an example of a simple map file:</p>

<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE map
 PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp Map Version 2.0//EN"
 "http://java.sun.com/products/javahelp/map_2_0.dtd">
<map version="2.0">
 <mapID target="intro" url="hol/hol.html" />
 <mapID target="halloween" url="hol/hall.html" />

<mapID target="jackolantern" url="hol/jacko.html" />
 <mapID target="mluther" url="hol/luther.html" />
 <mapID target="reformation" url="hol/inforefo.html" />
</map>

Note that the IDs should be unique within the HelpSet (although they may also appear in a sub-
helpset of this HelpSet).

3.4 Table of Contents

JavaHelp1.0 specifies one table of contents navigator view: javax.help.TOCView. This navi-
gational view models a table of contents. TOC files are encoded in an XML-based syntax; The
DTD is dtd/toc_2_0.dtd. The top level tag is <toc>. A version attribute is optional, when pres-
ent its value must be "1.0" or “2.0”. The categoryopenimage, categoryclosedimage and topici-
Sun Microsystems Inc. 22 JavaHelp V2.0 Specification

Java Software
mage are optional. If the categoryclosedimage is defined and the categoryopenimage is not
defined, the categoryopenimage will be set to the categoryclosedimage.

A TOC can contain only the following two tags:

Tag Description
Allowed

In
Body Attributes

toc Table of contents top-level empty xml:lang=”lang”
Language for this item

version=”1.0”|”2.0”
version

categoryopenimage=”string”
category open image ID

categoryclosedimage=”string”
category closed image ID

topicimage=”string”
topic image ID

tocitem Table of contents
item. Tags can be
nested to create
hierarchical
entries

toc, toc-
item

empty xml:lang=”lang”
language for this item

text=”string”
display text - required

image=”string”
image ID

target=”string”
destination ID

mergetype=”string”
name of Merge class

expand=true|false
expand the tocitem and sub
tocitems on initial display

presentationtype=”string”
name of presentation class;
a subclass of
javax.help.Presenation

presentationname=”string”
name of presentation
Sun Microsystems Inc. 23 JavaHelp V2.0 Specification

Java Software
3.4.1 Table of Contents Example

The following is an example of a table of contents view in the view section:

<view mergetype=”javax.help.UniteAppendMerge”>
 <name>TOC</name>
 <label>Table of Contents</name>
 <type>javax.help.TOCView</type>
 <data>toc.xml</data>
</view>

The following is an example of a table of contents file:

<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE toc
 PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp TOC Version 1.0//EN"
 "http://java.sun.com/products/javahelp/toc_1_0.dtd">

<toc version="1.0" categoryopenimage=”chapter” topicimage=”topic”>
 <tocitem text=”Introducing JavaHelp”>
 <tocitem text=”JavaHelp API” target="api" image="image/document.gif"/>
 <tocitem text=”JavaHelp platforms” target="platform" image="image/document.gif"

presentationtype=”javax.help.SecondaryWindow” presentationname=”mainSecondary”/>
 </tocitem>
</toc>

3.5 Index

JavaHelp1.0 specifies one index navigator view: javax.help.IndexView. This navigational
view models an index. Index files are encoded in an XML-based syntax; The DTD is dtd/
index_2_0.dtd. The top level tag is <index>. A version attribute is optional, when present its
value must be "1.0" or “2.0”.

An index can contain the following two tags:

Tag Description Allowed In Body Attributes

index Index top-level empty xml:lang=”lang”
Language for this item

version=”1.0”|”2.0”
(optional) version
Sun Microsystems Inc. 24 JavaHelp V2.0 Specification

Java Software
3.5.1 Index Example

The following is an example of a index view in the view section:

<view mergetype=”javax.help.SortMerge”>
 <name>index</name>
 <label>Index</name>
 <type>javax.help.IndexView</type>
 <data>index.xml</data>
</view>

The following is an example of an index file:

<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE index
 PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp Index Version 2.0//EN"
 "http://java.sun.com/products/javahelp/index_2_0.dtd">
<index version="1.0">
 <indexitem text=”Java Applets”>
 <indexitem text=”Overview” target="applet_over"
 presentationtype=”javax.help.SecondaryWindow presentationname=”mainsw”>
 <indexitem text=”Usage”>
 <indexitem text=”Inserting an applet in a content page” target="applet_insert">
 <indexitem text=”Editing an applet in a content page” target="applet_editing">
 </indexitem>
 </indexitem>
</index>

index-
item

Index item.
indexitem tags
can be nested to
create hierarchi-
cal entries

index,
indexitem

empty xml:lang=”lang”
Language for this item

text=”string”
display text - required

target=”string”
destination ID

mergetype=”string”
name of Merge class

expand=true|false
expand the tocitem and sub
tocitems on initial display

presentationtype=”string”
name of presentation class;
a subclass of
javax.help.Presenation

presentationname=”string”
name of presentation

Tag Description Allowed In Body Attributes
Sun Microsystems Inc. 25 JavaHelp V2.0 Specification

Java Software
3.6 Glossary

JavaHelp1.0 specifies one glossary navigator view: javax.help.GlossaryView. This naviga-
tional view models a glossary and is an extension of the javax.help.IndexView section 3.5
on page 27. It uses the index file encoding.

3.6.1 Glossary Example

The following is an example of a glossary view in the view section:

<view mergetype=”javax.help.SortMerge”>
 <name>glossary</name>
 <label>Glossary</name>
 <type>javax.help.GlossaryView</type>
 <data>glossary.xml</data>

</view>

The following is an example of an index file used in a glossary:

<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE index
 PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp Index Version 2.0//EN"
 "http://java.sun.com/products/javahelp/index_2_0.dtd">
<index version="2.0">
 <indexitem text=”applet” target="applet_def"/>
 <indexitem text=”application” target=”application_def”/>
 <indexitem text=”application server” target=”appServer_def”/>
 <indexitem text=”AWT” target="awt_def"/>
 <indexitem text=”beans” target="bean_def"/>
</index>

3.7 Favorites

JavaHelp1.0 specifies one favorites navigator view: javax.help.FavoritesView. This navi-
gational view models a users favorites. Unlike other navigational views which store the view’s
meta-data within the HelpSet, favorites are stored in the user’s directory in the file <us-
er.home>/.JavaHelp/Favorites.xml. Favorite files are encoded in an XML-based syntax;
The DTD is dtd/favorites_2_0.dtd. The top level tag is <favorites>. A version attribute is op-
tional, when present its value must be “2.0”.

A favorites can contain the following two tags:

Tag Description
Allowed

In
Body Attributes

favorites User favorites top-level empty xml:lang=”lang”
Language for this item

version=”2.0”
(optional) version
Sun Microsystems Inc. 26 JavaHelp V2.0 Specification

Java Software
3.7.1 Favorites Example

The following is an example of a favorites view in the view section:

<view>
 <name>favorites</name>
 <label>Favorites</name>
 <type>javax.help.FavoritesView</type>

</view>

• Favorites do not require a view data definition. Additionally mergetype is ignored.

The following is an example of an favorites file:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE favorites
 PUBLIC “-//Sun Microsystems Inc.//DTD JavaHelp Favorites Version 2.0//EN”
 “http://java.sun.com/products/javahelp/favorites_2_0.dtd”>

<favorites version=”1.0”>
 <favoriteitem text=”Love Holidays” >
 <favoriteitem text=”On Love” target=”onlove” hstitle=”History of the Holidays”/>
 <favoriteitem text=”Valentines” target=”valentine” hstitle=”History of the Holidays”/>
 </favoriteitem>
 <favoriteitem text=”Numbers” >
 <favoriteitem text=”Zero” target=”0” hstitle=”Master”/>
 <favoriteitem text=”Zero - note “ url=”file:/usr/test/hs/Zeronote.html” hstitle=”Master”/>
 </favoriteitem>
</favorites>

favorite-
item

Favorites item.
favoriteitem

tags can be nested
to create hierar-
chical entries

favorites,
favorite-
item

text to
show
in the
presen-
tation

xml:lang=”lang”
Language for this item

target=”string”
destination ID

url=”string”
URL specification

hstitle=”string”
title of HelpSet

presentationtype=”string”
name of presentation class; a
subclass of
javax.help.Presenation

presentationname=”string”
name of presentation

Tag Description
Allowed

In
Body Attributes
Sun Microsystems Inc. 27 JavaHelp V2.0 Specification

Java Software
3.8 Help Content

JavaHelp displays help topic files formatted using HTML. Links are resolved using the URL
protocols supported by the underlying platform. Lightweight JComponents can be added to
topic pages using the <OBJECT> tag.

3.9 Search Database

JavaHelp1.0 specifies one search navigator view: javax.help.SearchView. This navigational
view models a search interacting with a search database though objects that implement the ja-
vax.help.search package. The view has an <engine> tag that is the name of a class that is a
subclass of SearchEngine. That class is responsible for interpreting the search database that is
described by the URL in <data>.
Sun Microsystems Inc. 28 JavaHelp V2.0 Specification

Java Software
4 Localization

4.1 A Network Environment

JavaHelp follows the standard localization conventions used for ResourceBundle.getBundle().
In a networked environment, each such query may require a number of requests across a net-
work to determine the desired bundle for a given Locale. JavaHelp is designed so that only one
such search is required to locate the HelpSet file. All other information is obtained by simple
requests that start from this file.

Although the HelpSet file is localized following the same naming and lookup conventions as
with Java Property Resource Bundle, for technical reasons they are not property files. Instead,
the method HelptSet.getHelpSet() is used.

An invocation of HelpSet.getHelpSet(name, locale) invokes HelpUtilities.getLo-
calizedResource(). HelpUtitities.getLocalizedResource() eventually calls into
ClassLoader.getResource() with resource names that are based on the name passed and on
the Desired locale and the Default locale.

If the first argument to getHelpSet() is "name", the search is conducted in the order shown
below (from most specific to least specific). The extension is fixed to be ".hs":

 name_language_country_variant.hs
 name_language_country.hs
 name_language
 name
 name_defaultlanguage_defaultcountry_defaultvariant
 name_defaultlanguage_defaultcountry
 name_defaultlanguage

This search order is the one used for ResourceBundle, where it is not exposed. It is captured
and exposed in HelpUtilities.getCandidates().

4.2 Localized Documents

The HTML viewers are required to support localization as specified by the W3C HTML 4.0
standard.

4.3 Full Text Search

Java uses Unicode internally and it is well suited to internationalization and localization. One
specific requirement is that the search code be able to deal with documents that are written in
both English and another language. This combination occurs often when some documents have
been translated but others have not.

4.4 More Details

The "Localizing Help Information" section of the JavaHelp User's Guide describes the local-
ization process in detail.
Sun Microsystems Inc. 29 JavaHelp V2.0 Specification

http://www.javasoft.com/products/jdk/preview/docs/api/java.util.ResourceBundle.html
http://www.javasoft.com/products/jdk/preview/docs/api/java.util.PropertyResourceBundle.html

Java Software
5 JavaHelpTM 1.0 - Customization

5.1 Introduction

There are several mechanisms for customizing JavaHelp:

• Defining a different default HelpBroker
• Associating alternate content viewers with MIME types
• Using non-standard NavigatorView or JHelpNavigator
• Choosing SearchEngine
• Exploiting the URL protocols

5.2 Help Broker

A HelpBroker provides abstraction of the presentation details of a HelpSet. There are two ways
of obtaining a HelpBroker: through an explicit instantiation of DefaultHelpBroker, or by in-
voking the createHelpBroker() method on a HelpSet instance. The default HelpBroker re-
turned by the createHelpBroker() call is implementation dependent--the reference
implementation returns DefaultHelpBroker.

Constructors of HelpBrokers take a HelpSet instance as an argument; DefaultHelpBroker
uses a JHelp for its presentation, adding to it all the HelpNavigators that were requested in the
HelpSet file and arranging them so they all share the same HelpSetModel.

A JavaHelp system implementation may choose not to create a DefaultHelpBroker as the de-
fault HelpBroker for any of several reasons, for example to maintain a consistent presentation.
Thus, it is often best to use createHelpBroker() to obtain the HelpBroker.

5.3 Content Viewers

The JavaHelp reference implementation uses JEditorPane to present the HTML content of a
given URL. This class supports a registration mechanism by which you can add viewers for
given MIME types. This mechanism is exported through the JHelpContentViewer JavaHelp
class and can be used to display additional MIME types, or to change the presentation of a giv-
en type from the default presentation. The mapping can be changed globally or on a per-Help-
Set instance.For additional information, see section 5.6 on page 35 below.

5.4 NavigatorView and JHelpNavigator

The NavigatorView class defines a NavigatorView type and provides access to the information
in a <view> tag in a HelpSet file. A NavigatorView also provides a JHelpNavigator through
its create method. JHelpNavigator is the Swing class used in the JavaHelp system to capture
the presentation of a NavigatorView. A JHelpNavigator can be created directly, but more
commonly it is created implicitly through the create() method in a NavigatorView.

5.4.1 View-Specific Knowledge

Specific NavigatorView may have additional methods and fields that encode specific infor-
mation on the view type. For instance, both TOCView and IndexView provide a parse method
Sun Microsystems Inc. 30 JavaHelp V2.0 Specification

Java Software
that can be used to parse a URL that conforms to the file format. These methods use a Factory
class to provide access for customizing the result of the parsing.

The separation of view data and its presentation means that it is possible to access the view data
without having to actually create the presentation. It also means that it is easy to modify the
presentation without having to duplicate some data-specific information; for example, by reus-
ing the parsing methods.

5.4.2 Different Formats

The Help Navigator mechanism can also be used to provide access to meta-data that is in a "for-
eign" or "legacy" format. This might enable an application to access information from legacy
applications or an alternate meta-data format such sitemap, or meta-data from the Library of
Congress, or other library system. This may be done by creating a new NavigatorView that can
parse the "foreign" format but that reuses the presentation from the JavaHelp JHelpNavigator.

A variation of this last case, the data is not stored anywhere but it is created dynamically. This
is easily accomplished by subclassing TOCView (for instance) and redefining the method get-
DataAsTree() to return the data whenever invoked.

5.4.3 Different Presentations

A JHelpNavigator selects its presentation through the standard Swing method getUIClas-
sID() to indicate its ComponentUI class. A new JHelpNavigator that is not capable or willing
to reuse an existing ComponentUI needs to return an appropriate class value in getUIClas-
sID(). If appropriate, this ComponentUI may be a subclass of the standard ComponentUI
classes (BasicTOCNavigatorUI.java, BasicIndexNavigatorUI.java and BasicSearch-
NavigatorUI.java) with some methods redefined. A useful method to redefine is setCellRen-
derer which permits to change the presentation details of the Tree in both TOC and Index
presentations.

5.4.4 Two Examples of Custom Views

The five standard Views included in JavaHelp 1.0 (TOCView, IndexView, GlossaryView, Fa-
voritesView and SearchView) cover most online documentation needs, but there are other sit-
uations where one might want to have custom views and navigators. As a first example, the
Java Tutorial could be used to illustrate the concept of a Help Navigator. The Java Tutorial is
an online document that describes the Java Platform. The tutorial is organized into trails:
groups of lessons on a particular subject. A version of the tutorial could take advantage of a
NavigatorView that supported the notion of a trail. Such a view could remember the position
within the trail, quickly reference examples within the trail, and navigate to other trails.

Another example is an API class viewer. Such a viewer was created for demonstration purposes
and is included in the reference implementation. This NavigatorView uses information collect-
ed from source files that are annotated using the javadoc system. The traditional data generated
by javadoc is produced as HTML files. Static HTML indexes and trees are used to provide
navigational information. The result is useful but it is difficult to effectively navigate. The
classviewer NavigatorView is customized to dynamically display this information. A picture
of the presentation is shown next:
Sun Microsystems Inc. 31 JavaHelp V2.0 Specification

Java Software
In this example there are three navigational views: TOC, Index, and Search. Index is an index
of all the methods, classes, and packages, and Search provides a full-text search of all the ja-
vadoc information. The TOC view uses the new classview NavigatorView. When a class is se-
lected in the top pane of the navigator, the JHelpNavigator determines if it has already loaded
the metadata for that class. If not, it presents the fields, constructors and methods in the bottom
pane. When a method is selected, the appropriate content file is presented in the JavaHelp sys-
tem TOC pane. In this particular prototype, the information presented is only that of the select-
ed class but the navigator could easily provide access to inherited information too.

For this example, we use the new Doclet facility in JDK1.2 to generate the desired metadata.

5.5 Search Engines

The standard NavigatorView and JHelpNavigator search classes (javax.help.SearchView
and javax.help.JHelpSearchNavigator) provide an interaction with search engines via the
classes in the javax.help.search package. SearchView views may have an optional <en-
gine> attribute of their data tag indicating the specific javax.help.search.SearchEngine
subclass to use to perform searches. The default is com.sun.java.help.search.Default-
SearchEngine, which is the search engine included in the reference implementation.

The same view and presentation can be used with other search engines following the same pro-
tocol, by naming the SearchEngine class in the <engine> attribute and making the class avail-
able.

Different view and or presentations of search can be provided using the standard customization
mechanisms for this. These may, or not, reuse the default search engine.
Sun Microsystems Inc. 32 JavaHelp V2.0 Specification

Java Software
5.6 Key-Data Map

HelpSet provides a simple registry mechanism that provides per-instance or global key-data
mapping. The mechanism can be accessed via the setKeyData, setDefaultKeyData and get-
KeyData methods. This mechanism is used by the JHelpContentViewer to determine the Ed-
itorKit to use for a given MIME type, and also to determine the HelpBroker to use in the
HelpSet.createHelpBroker() method.

The per-HelpSet registry will be instantiated from the contents of the <impl> section of the
HelpSet file in the 1.0 version of the JavaHelp system.

5.7 Using new URL protocols

Another mechanism for extending JavaHelp is by providing new protocols that can, for exam-
ple, provide SGML -> HTTP translation. This is very easy to do in a Java application by defin-
ing a few simple URL classes.
Sun Microsystems Inc. 33 JavaHelp V2.0 Specification

Java Software
6 JavaHelpTM 1.0 - JavaBeans Help data

6.1 Introduction

There are different types of help information associated with JavaBeans components.

• Help information about the JavaBeans component to use by a "container"
• Help information used by the JavaBeans component itself (for example, a popup)
• Help information to be attached to a JavaBeans component instance

In the first case, information is associated with the presence of the JavaBeans component in its
container. For example, this is what happens when a JavaBeans component is added to a Build-
er tool palette, or when a new JavaBeans component plug-in is dropped into JMAPI.

The second case occurs at runtime within a JavaBeans component. For example, the JavaBeans
component is a complex plug-in. While in a popup window for that plug-in, we want to display
the help information in a form that is consistent with whatever display presentation the contain-
er uses for help information.

The third case occurs when a JavaBeans component is instantiated into a container and it is giv-
en some semantics by customizing it and by attaching to events and actions. In this case we
want an easy mechanism to assign help data that describes the semantics so that a gesture can
retrieve that help data.

The mechanisms described in the following section pertain to the first two cases. The third sit-
uation is covered by the mechanisms for context-sensitive help and other, more ad hoc, mech-
anisms.

6.2 Help Information

The needs of the two cases described above require the association and retrieval of two pieces
of information per JavaBeans component:

• helpSetName: the name of a HelpSet that contains help information
• helpID: a home ID within that HelpSet to use to present data

Having two different pieces of information (cf. having the HelpID be a fixed value) provides
for additional packaging flexibility and leads to a nice default convention, and useful default
values are important to keep within the JavaBeans design philosophy. The default for this in-
formation depends on whether the name of the JavaBeans component is in the unnamed pack-
age or not:

Name is of the form OurButton:

• helpSetName: add a Help.hs to name: OurButtonHelp.hs
• helpID: add ".topID" to name: OurButton.topID

If the name is of the form sunw.demo.buttons.OurButton:

• helpSetName: drop the shortname, replace '.' with '/' and add a '/Help.hs': sunw/demo/
buttons/Help.hs.

• helpID: add ".topID" to name: sunw.demo.buttons.OurButton.topID:
Sun Microsystems Inc. 34 JavaHelp V2.0 Specification

Java Software
6.3 Mechanism

The proposed mechanism is to use two optional String-valued BeanInfo attributes with the
names suggested above: "helpSetName", and "helpID". This mechanism is relatively simple,
does not require the JavaBeans component to be initialized, and it is consistent with other uses
of BeanInfo attributes (e.g. Swing's use for container information).

To simplify following the default rules described above, we add two methods to a JavaHelp
class that take a Class object and return the desired Strings after consulting the appropriate
methods.

6.4 An Example:

Below is the buttons example from the BDK, modified to provide Help information. This ex-
ample uses the default values for HelpSetName and HelpId:

6.4.1 Manifest and JAR File

The manifest file just changes to include the Help files; it would look like:

 // Beans, Implementation Classes, and Gif images are as before

 // the HelpSet file
 Name: sunw/demo/buttons/Help.hs

 // The Map file
 Name: sunw/demo/buttons/help/Map.html

 // Actual html data - in this case all in one file
 Name: sunw/demo/buttons/help/Buttons.html

 // View data
 Name: sunw/demo/buttons/help/toc.xml

 Name: sunw/demo/buttons/help/index.xml

 Name: sunw/demo/buttons/help/search.dat

6.4.2 The HelpSet File

All the HelpSet files are the same. The HelpSet file is quite simple (see section 6.4.2 on page
37 for details on the classes view).

 # ...

 # map URL
 <homeID>sunw.demo.buttons.topId</homeID>
 <map>
 <data>!/sunw/demo/buttons/help/Map.html</data>
 </map>

 # data views
 <view>
 <name>TOC</name>
 <label>Table of Contents</label>

<type>javax.help.TOCView</type>
 <data>!/sunw/demo/buttons/help/toc.xml</data>
Sun Microsystems Inc. 35 JavaHelp V2.0 Specification

Java Software
 </view>

 <view>
 <name>Index</name>
 <label>Index</label>
 <type>javax.help.IndexView</type>
 <data>!/sunw/demo/buttons/help/index.xml</data>
 </view>

 <view>
 <name>Search</name>
 <label>Search</label>
 <type>javax.help.SearchView</type>
 <engine>com.sun.java.help.search.DefaultSearchEngine</engine>
 <data>!/sunw/demo/buttons/help/search.dat</data>
 </view>

6.4.3 The Help Map

In this simple example, the Map just handles the top IDs, plus a global introduction to the but-
tons package.

 sunw.demo.buttons.topId="!/sunw/demo/buttons/help/Buttons.html#Top"
 sunw.demo.buttons.OurButton.topId="!/sunw/demo/buttons/help/Buttons.html#OurButton"
 sunw.demo.buttons.ExplicitButton.topId="!/sunw/demo/buttons/help/

Buttons.html#ExplicitButton"
 sunw.demo.buttons.OrangeButton.topId="!/sunw/demo/buttons/help/Buttons.html#OrangeButton"
 sunw.demo.buttons.BlueButton.topId="!/sunw/demo/buttons/help/Buttons.html#BlueButton"

6.5 An Alternative Arrangement

A alternative arrangement would have been to place all the help data in a single nested JAR
file. For example:

6.5.1 Manifest and JAR file

// The Beans, Implementation Classes and Gifs as before
// The Help data
Name: sunw/demo/buttons/Help.hs
// The rest of the Help data
Name: sunw/demo/buttons/help.jar

6.5.2 The HelpSet File

The Help file has to change a bit:

 # no property requests
 # map URL
 <homeID>sunw.demo.buttons.topId</homeID>
 <map>
 <data>!/sunw/demo/buttons/help.jar!/Map.html</data>
 </map>
 # data views
 <view>
 <name>TOC</name>
 <label>Table of Contents</label>
 <type>javax.help.TOCView</type>
 <data>!/sunw/demo/buttons/help.jar!/toc.xml</data>
 </view>
 <view>
 <name>Index</name>
Sun Microsystems Inc. 36 JavaHelp V2.0 Specification

Java Software
 <label>Index</label>
 <type>javax.help.IndexView</type>
 <data>!/sunw/demo/buttons/help.jar!/index.xml</data>
 </view>
 <view>
 <name>Search</name>
 <label>Search</label>
 <type>javax.help.SearchView</type>
 <engine>com.sun.java.help.search.DefaultSearchEngine</engine>
 <data>!/sunw/demo/buttons/help.jar!/search.dat</data>
 </view>

6.5.3 The Help Map

In this example, we can choose to use exactly the same Help map as what we used in the pre-
vious arrangement.
Sun Microsystems Inc. 37 JavaHelp V2.0 Specification

Java Software
7 Server Based JavaHelp

 Server based applications have the same need for online help as client based applications. The
JavaHelp V1.0 API provided a good foundation for developing online help for server based ap-
plications. However, the specification was not complete in defining a standard for a JavaHelp

bean and Java Server Pages TM(JSP) tag library for accessing HelpSet data. This section de-
fines the new standards in JavaHelp for server based applications.

7.1 Java Server Pages

JSP allows web developers to develop content-rich, dynamic pages rapidly and easily. JSP uses
XML-like tags to encapsulate the logic that generates web content. JSP pages separate the page
logic from its design and display, which prevents the overlapping of roles between web design-
ers and programmers. Designers design the web pages and programmers add the logic and code
to them. For more information and useful tutorials on JavaServer Pages technology, see Ja-
vaServer Pages Dynamically Generated Web Content.

7.2 Server Based JavaHelp Architecture

By combining the JavaHelp API with new JavaHelp JSP tag libraries web developers will be
able to provide help for server based applications. The diagram below illustrates the architec-
ture.

Browser

Java Server

jh.jar

HelpSet

HTML
&

JavaScript

JSP
request

A browser initiates a JSP request. Examples of a JSP request are displaying the help content in
HelpSet, the navigators, or the data for a given navigator. Typically the JSP request will contain
JavaBeans as well as JSP tag extensions. The JavaServer turns the request into a Java Servlet.
The servlet access the appropriate information from the HelpSet using the classes in JavaHelp
library (jh.jar) and JavaHelp tag library (jhtags.jar) and returns HTML and possibly JavaScript
or DHTML to the browser.
Sun Microsystems Inc. 38 JavaHelp V2.0 Specification

Java Software
7.3 JavaHelp Server Components

Access to HelpSet data on a server is accomplished through a combination of JavaHelp specific
Java Beans and JSP tag extensions. This section defines the standard JavaHelp JavaBeans and
JSP tag extensions and scripting variables

7.3.1 JavaHelp Server Bean

ServeletHelpBroker is the Java Bean that stores help state information such as the HelpSet
in use, the currentID, the current navigator and other pieces of help information. While it im-
plements the javax.help.HelpBroker interface some of the methods are either not imple-
mented or throw UnsupportedOperationExceptions if called. The list of methods not
implemented are listed below.

Method Result

initPresentation() No Operation

setDisplayed(boolean) Ignored

boolean isDisplayed() Always returns true

enableHelpKey(Component,

 String id, HelpSet

No Operation

enableHelp(Component|MenuItem,

 String id, HelpSet

No Operation

enableHelpOnButton(Component|

 MenuItem,

 String id,

 HelpSet

No Operation

One new method is added to ServletHelpBroker

Method Definition

NavigatorView getCurrentNaviga-
torView()

Returns the current navigator as a NavigatorView

7.3.1.1 Usage

The ServletHelpBroker is used in the JSP request with a session scope. As such it would re-
main in existence for the duration of a session.

<jsp:useBean id=”helpBroker” class=”ServletHelpBroker” scope=”session” />

 The ServletHelpBroker methods can be called either within tag libraries as illustrated below.

<jh:validate helpBroker=”<%= helpBroker %>” />

or directly in the JSP as illustrated below
Sun Microsystems Inc. 39 JavaHelp V2.0 Specification

Java Software
<FRAME SRC=”<jsp:getPorperty name=”helpBroker” property=”currentURL” />” NAME=”contentsFrame”
SCROLLING=”AUTO”>

7.3.2 JavaHelp JSP Tag Extensions

While it would be possible to retrieve all the HelpSet information required for displaying online
help or documentation using Java Beans and JSP scriptlets, a standard set of tag extensions in
the JavaHelp tag library enables application functionality to be invoked without the appearance
of programming. The JavaHelp tag library is a common set of building blocks that

• conceals the complexity of access to HelpSet data
• introduces new scripting variable into a page
• handles iterations without the next for scriptlets

The JavaHelp tags are define below:

Tag
Tag Class
TEI Class

Description Attributes

validate ValidateTag Validate a helpBroker
with the various parame-
ters. Allows for easy
setup of a helpBroker
with a new HelpSet.
Also provides for merg-
ing HelpSets and the set-
ting of the currentID

helpbroker
required

HelpBroker object

setInvalidURL
not required

String representing the URL for Invalid
HelpSet message.

helpSetName
not required

String representing the URL for the
HelpSet name

currentID
not required

String id of desired currentID

merge
not required

boolean value - if true then merge
HelpSet into current HelpSet if one
exists, otherwise do not merge helpset
Sun Microsystems Inc. 40 JavaHelp V2.0 Specification

Java Software
navigators NavigatorsTag
NavigatorsTEI

Returns NavigatorView
information for a given
HelpBroker

helpbroker
required

HelpBroker object

currentNav
not required

String name of the current navigator

tocItem TOCItemTag
TOCItemTEI

Provided with a
TOCView, returns TOC-
Item information

tocView
required

TOCView object

helpbroker
required

HelpBroker object

baseID
not required

determined by expression

String text for the base identification of
the TOCItem

indexItem IndexItemTag
IndexItemTEI

Provided with a Index-
View, returns IndexItem
informatation

IndexView
required

determined by expression

IndexView object

helpbroker
required

HelpBroker object

baseID
not required

String text for the base identification of
the TOCItem

Tag
Tag Class
TEI Class

Description Attributes
Sun Microsystems Inc. 41 JavaHelp V2.0 Specification

Java Software
 Unless otherwise specified all attributes values are determined by expression. Also with the
exception of validate the body of all tags are JSP.

7.3.2.1 Validate Usage

The validate tag is designed to used once within a jsp as illustrated

<jh:validate helpBroker="<%= helpBroker %>" />

This verifies that a valid HelpBroker exists and then loads the HelpSet that has either been de-
fined in validate using the helpSetName argument or as an HTTP POST request.

7.3.3 Navigator Scripting Variables

The navigator, tocItem, indexItem and searchItem tag extensions introduce a predefined set of
scripting variables into a page. This allows the calling JSP to control the presentation without
performing the processing involved in determining the content.

Unless otherwise specified all scripting variables in JavaHelp create a new variable and the
scope is set to NESTED. NESTED variables are available to the calling JSP only within the
body of the defining tag.

7.3.3.1 Navigator Variables

The navigator variable are defined in the table below.

searchItem SearchItemTag
SearchItemTEI

Provided with a Search-
View, returns
SearchItem informata-
tion

searchView
required

SearchView object

helpbroker
required

HelpBroker object

baseID
not required

String text for the base identification of
the SearchItem

Variable Data Type Description

classname java.lang.String Name of the NavigatorView class

name java.lang.String Name of the View as defined in the HelpSet

tip java.lang.String Tooltip text for the View

Tag
Tag Class
TEI Class

Description Attributes
Sun Microsystems Inc. 42 JavaHelp V2.0 Specification

Java Software
7.3.3.1.1 Navigator Variable Usage

The navigator tag is useful to return information about the current navigator. In the illustration
below the navigator tag is used to determine the navigators that are used in the HelpSet and sets
an HTML IMG tag based on the navigator name.

<jh:navigators helpBroker="<%= helpBroker %>" >
<A HREF="navigator.jsp?nav=<%= name %>">
<IMG src="<%= iconURL!=""? iconURL : "images/" + className +".gif" %>" Alt="<%= tip %>"

BORDER=0>
</jh:navigators>

7.3.3.2 tocItem Variables

The tocItem variable are defined in the table below.

Variable Data Type Description

name java.lang.String tocItem text as defined in the name attribute

target java.lang.String tocItem target as defined in the target attribute

parent java.lang.String hex value identifying parent node

parentID java.lang.String String identification identifying parent node

node java.lang.String hex value identifying this node

nodeID java.lang.String String identifying this node

iconURL java.lang.String URL for the icon if set with the imageID attributed in the
tocItem or the defaults imageIDs in the toc

iconOpenURL java.lang.String URL for the open icon if set with the imageID attributed
in the tocItem or the default imageIDs in the toc

contentURL java.lang.String URL for the content represent by this item

7.3.3.2.1 tocItem Usage

The tocItem tag returns information about the tocItems defined in a TOCView. In the illustra-
tion below the TOCView returns tocItems scripting variables that are added to a javascript tag
addNode.

<% TOCView curNav = (TOCView)helpBroker.getCurrentNavigatorView(); %>
<jh:tocItem tocView="<%= curNav %>" helpBroker="<%= helpBroker %>" >
addNode("<%= name %>","<%= iconURL!=""?iconURL:"null" %>","","-1","<%=

contentURL!=""?contentURL:"null" %>","<%= target %>","<%= nodeID %>","<%= parentID %>");

iconURL java.lang.String URL for the icon if set with the imageID attributed in the
HelpSet

isCurrentNav java.lang.Boolen True if current navigator; false otherwise

Variable Data Type Description
Sun Microsystems Inc. 43 JavaHelp V2.0 Specification

Java Software
</jh:tocItem>

7.3.3.3 indexItem Variables

The indexItem variable are defined in the table below.

Variable Data Type Description

name java.lang.String indexItem text as defined in the name attribute

target java.lang.String indexItem target as defined in the target attribute

parent java.lang.String hex value identifying parent node

parentID java.lang.String String identification identifying parent node

node java.lang.String hex value identifying this node

nodeID java.lang.String String identifying this node

contentURL java.lang.String URL for the content represent by this item

7.3.3.4 indexItem Usage

The itemItem tag returns information about the indexItems defined in a IndexView. In the il-
lustration below the IndexView returns indexItems scripting variables that are added to a javas-
cript tag addNode.

<% IndexView curNav = (IndexView)helpBroker.getCurrentNavigatorView(); %>
<jh:indexItem indexView="<%= curNav %>" helpBroker="<%= helpBroker %>" >
addNode("<%= name %>","null","","-1","<%= contentURL!=""?contentURL:"null" %>","<%= helpID

%>","<%= nodeID %>","<%= parentID %>");
</jh:indexItem>

7.3.3.5 searchItem Variables

The searchtem variable are defined in the table below.

Variable Data Type Description

name java.lang.String Unique name of the searchItem

helpID java.lang.String Id associated with this searchItem

confidence java.lang.String The quality of the hits as returned the search engine

hits java.lang.String number of hits

contentURL java.lang.String URL for the content represent by this item

hitBoundries java.lang.String A list of boundaries. Returns in the format of {begin,
end},...
Sun Microsystems Inc. 44 JavaHelp V2.0 Specification

Java Software
7.3.3.5.1 SearchItem Usage

The searchItem tag returns information about the searchItems defined in a SearchView. In the
illustration below the SearchView returns searchItems scripting variables that are added to a
javascript tag addNode.

<jh:searchItem searchView="<%= curNav %>" helpBroker="<%= helpBroker %>" query="<%= query %>" >
addNode("<%= name %>","<%= confidence %>","<%= hits %>","<%= contentURL %>","<%= helpID %>");
</jh:searchItem>
Sun Microsystems Inc. 45 JavaHelp V2.0 Specification

Java Software
8 Presentation of Help Content

8.1 Introduction

In V1.0 help content could only be presented in a single presentation method as defined within
the HelpBroker. In the reference implementation this was a tri-paned main window. While the
components to provide other presentations were present in V1.0, the six invocation mecha-
nisms (see section A.2 on page 82) for activating help limited the display to a single presenta-
tion.

V2.0 improves this functionality by allowing multiple forms of help content presentation. Sup-
ported presentations will now include the tri-paned main window, named secondary windows
and popups. Additionally, reference implementations and end users have the capability of pro-
viding additional presentation forms.

8.2 Presentation Class

Greater flexibility in the presentation of help content is provided in the new Presentation
class. This abstract class provides developers with a generic interface for the development of
alternative presentations. Each implementation of Presentation will need to override the stat-
ic method getPresentation according to it’s own needs. For instance Popup would create a
single object whereas SecondaryWindow would look for an existing secondary window that
matched the parameters before creating a new SecondaryWindow object.

The key to Personation is the generic methods that are required for all presentations.

Method Description

getPresentation(hs, name) Static method to return a Presentation for the
given type. By default Presentation will return
null and concrete class extending Presentation
should override this method with their own imple-
mentation.

setHelpSetPresentation

 (HelpSet.Presentation)

Set the Presentation attributes from a named pre-
sentation in the HelpSet.

get/setCurrentID(ID)

setCurrentID(stringId)

Get/set the current ID for the presentation.

get/setCurrentURL(URL) Get/set the current URL for the presentation.

get/setFont(Font) Get/set the Font for the presentation.

get/setLocale(Locale) Get/set the Locale for the presentation.

get/setHelpSet(HelpSet) Get/set the HelpSet for the presentation.
Sun Microsystems Inc. 46 JavaHelp V2.0 Specification

Java Software
8.2.1 Presentation Extensions

The specification calls for all implementation to provide four extensions of the Presentation
class. One of the extensions is an abstract class for window presentations

8.2.1.1 Popup

Popup is a direct implementation of Presentation. A Popup contain only a content viewer. It
is intended to provide immediate help and then allow the user to continue working. Once a pop-
up loses focus, it is destroyed.

8.2.1.2 Window Presentations

Window presentations require additional controls than what is provided in Presentation. An
abstract class WindowPresentation provides additional methods generic for window based
presentations.

Name Description

get/setLocation(Point) Get/set the location of the presentation.

get/setTitle(String) Get/set the title for the presentation.

get/setCurrentView(stringView) Get/set the current navigational view for the pre-
sentation.

is/setViewDisplayed(boolean) Is/set the navigation views to be displayed in the
presentation.

is/setDestroyedOnExit(boolean) Is/set the window to be destroyed on exit.

get/setActivationWindow(Window)

setActivationObject(Object)

Get/set the current activation Window for the pre-
sentation. Optionally a method is provided to do
this from an Object

is/SetTitleFromDocument

 (boolean)

Determines if the title is set from the displayed
Document. This is generally usefull for presenta-
tions such as SecondaryWindows.

is/SetToolbarDisplay(boolean) Determines if the toolbar is displayed

getHelpSetPresention() Returns the HelpSet.Presentation if one was set.

createHelpWindow() Creates the help window used in the Presentation.

destroy() Destroy this object and any subobjects it created.

is/setDisplayed(boolean) is/set the presentation displayed.

get/setSize(Deminsion) Get/set the size for the presentation.
Sun Microsystems Inc. 47 JavaHelp V2.0 Specification

Java Software
Additionally the WindowPresentation will maintain a static list of WindowPresentations.
These are accessed through the protected method get/putWindowPresentation.

8.2.1.2.1 Main Window

The MainWindow is the main presentation for the JavaHelp system. By default it is a tri-paned
fully decorated window consisting of a tool bar, navigator pane, and help content viewer. By
default the object is not destroyed when the window is closed.

8.2.1.2.2 Secondary Window

A SecondaryWindow is similar to the MainWindow in that it is a fully decorated window. By
default it only contains a help content viewer though could optionally include a toolbar and/or
navigators. Unlike the main window it is destroyed by default on closing. Additionally, sec-
ondary windows have a name associated with them. Use of a named secondary window will
cause the current contents to be replaced if a named window is visible.

8.3 Help Author Presentation Control

The help author can override any of the presentations attributes in the HelpSet file. For more
information on overriding presentation attribute defaults see section 3.2.7 on page 21.

8.4 Activating Help in Presentations

There are six invocation mechanism for activating help:

• Field-level context-sensitive help
• Window-level context-sensitive help
• User initiated context-sensitive help
• System initiated context-sensitive help
• Navigator
• Viewer

For more information on invocation mechanism see section A.2 on page 82.

V1.0 was limited to the presentation of HelpBroker (generally a tri-pane window). Each of the
invocation mechanism have been extended to allow presentations in one of the standard or cus-
tom Presentations. The new methods or file formats are in Bold.

Method or File Format Invocation Mechanism

CSH.DisplayHelpAfterTracking(HelpBroker)

CSH.DisplayHelpAfterTracking(

 HelpSet,

 StringPresentation,

 StringPrentationName)

Field-level CSH
Sun Microsystems Inc. 48 JavaHelp V2.0 Specification

Java Software
CSH.DisplayHelpFromFocus(HelpBroker)

CSH.DisplayHelpFromFocus(

 HelpSet,

 String presentation,

 String presentationName)

HelpBroker.enableHelpKey(MenuItem,

 String id,

 HelpSet)

HelpBroker.enableHelpKey(Component,

 String id,

 HelpSet)

HelpBroker.enableHelpKey(Object,

 String id,

 HelpSet,

 String presentation,

 String presentationName)

Window-level CSH

CSH.DisplayHelpFromSource(HelpBroker)

CSH.DisplayHelpFromSource(HelpSet,

 String presentation,

 String presentationName)

HelpBroker.enableHelpOnButton(MenuItem

 String id,

 HelpSet)

HelpBroker.enableHelpOnButton(Component,

 String id,

 HelpSet)

HelpBroker.enableHelpOnButton(Object,

 String id,

 HelpSet,

 String presentation,

 String presenationName)

User Initiated CSH
Sun Microsystems Inc. 49 JavaHelp V2.0 Specification

Java Software
8.4.1 Field-level Context-sensitive Help

No changes to existing code are required to display field-level context-sensitive help in the
MainWindow. The following invocation would display the field-level help in a main window.

JToolBar toolbar=new JToolBar();
...

helpbutton = addButton(toolbar, "images/help.gif", "help");
helpbutton.addActionListener(new CSH.DisplayHelpAfterTracking(mainHB));

HelpBroker.setCurrentID(String id)

Presentation.setCurrentID(String id)

HelpBroker.showID(String id,

 String presentation,

 String presentationName)

HelpBroker.setCurrentID(ID)

Presentation.setCurrentID(String id)

HelpBroker.showID(ID,

 String presenation,

 String presentationName)

System Initiated CSH

TOCItem(target=”id”)

TOCItem(target=”id”

 presentation=”presentation_class”

 presentationName=”presentation_name”)

IndexItem(target=”id”)

IndexItem(target=”id”

 presentation=”presentation_class”

 presentationName=”presentation_name”)

Navigator
Sun Microsystems Inc. 50 JavaHelp V2.0 Specification

Java Software
JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

x

Name:

Address:

City

?

?

View in a Main Window

The following invocation would display the field-level help in a popup as illustrated.

JToolBar toolbar=new JToolBar();
...
helpbutton = addButton(toolbar, "images/help.gif", "help");
helpbutton.addActionListener(new CSH.DisplayHelpAfterTracking(mainHS,

 "javax.help.Popup",
null));

x

Name:

Address:

City

?

?

View in a Popup

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

The following invocation would display the field-level help in a secondary window as illustrat-
ed.

JToolBar toolbar=new JToolBar();
...
helpbutton = addButton(toolbar, "images/help.gif", "help");
helpbutton.addActionListener(new CSH.DisplayHelpAfterTracking(mainHS,

 "javax.help.SecondaryWindow",
 “mainSW”));
Sun Microsystems Inc. 51 JavaHelp V2.0 Specification

Java Software

x

Name:

Address:

City

?

?

View in a Secondary Window

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

8.4.2 Window Level Context-Sensitive Help

No changes to existing code are required to display window-level context-sensitive help in the
MainWindow. The following invocation would display the window-level help in a main win-
dow.

JTextArea newText = new JTextArea();
hb.enableHelp(newText, “debug.overview”, hs);

...
rootpane = frame.getRootPane();
mainHelpBroker.enableHelpKey(rootpane, “top”, null);

x

Name:

Address:

City

View in a Main Window

F1

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

The following invocation would display the window-level help in a popup as illustrated.

JTextArea newText = new JTextArea();
hb.enableHelp(newText, “debug.overview”, hs);

...
Sun Microsystems Inc. 52 JavaHelp V2.0 Specification

Java Software
rootpane = frame.getRootPane();
mainHelpBroker.enableHelpKey(rootpane, “top”, null, “javax.help.Popup”, null);

x

Name:

Address:

City

View in a PopupF1

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

The following invocation would display the window-level help in a secondary window as il-
lustrated.

JTextArea newText = new JTextArea();
hb.enableHelp(newText, “debug.overview”, hs);

...
rootpane = frame.getRootPane();
mainHelpBroker.enableHelpHey(rootpane, “top”, hs, “javax.help.SecondaryWindow”, “mainSW”);

x

Name:

Address:

City

View in a Secondary Window

F1

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

8.4.3 User initiated context-sensitive help

No changes to existing code are required to display user initiated context-sensitive help in the
MainWindow. The following invocation would display the user initiated help in a main window.

JButton helpbutton = new JButton(“Help”);
mainHelpBroker.enableHelpOnButton(helpbutton, “browse.strings”, null);
Sun Microsystems Inc. 53 JavaHelp V2.0 Specification

Java Software
JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

x

Name:

Address:

City

Help

View in a Main Window

The following invocation would display the user initiated help in a popup as illustrated.

JButton helpbutton = new JButton(“Help”);
mainHelpBroker.enableHelpOnButton(helpbutton, “browse.strings”, null,

 “javax.help.Popup”, null);

x

Name:

Address:

City

View in a Popup

Help

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

The following invocation would display the user initiated help in a secondary window as illus-
trated.

JButton helpbutton = new JButton(“Help”);
mainHelpBroker.enableHelpOnButton(helpbutton, “browse.strings”, null,

 “javax.help.SecondaryWindow”, “mainSW”);
Sun Microsystems Inc. 54 JavaHelp V2.0 Specification

Java Software
x

Name:

Address:

City

View in a Secondary Window

Help

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

8.4.4 System initiated context-sensitive help

No changes to existing code are required to display system initiated context-sensitive help in
the MainWindow. The following invocation would display the system-initiated help in a main
window.

mainHelpBroker.setCurrentID(helpID);

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

x

Name:

Address:

City

View in a Main Window

The following invocation would display the system initiated help in a popup as illustrated.

Popup popup = (Popup)Popup.getPresentation(mainHS, null);
popup.setInvoker(component);
popup.setCurrentID(helpID);
popup.setDisplayed(true);
Sun Microsystems Inc. 55 JavaHelp V2.0 Specification

Java Software

x

Name:

Address:

City

View in a Popup

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

The following invocation would display the system initiated help in a secondary window as il-
lustrated.

mainHelpBroker.showID(helpID, “javax.help.SecondaryWindow”, “main”);

x

Name:

Address:

City

View in a Secondary Window

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

8.4.5 Navigator

No changes to exist code are required to display an item in the main window. Selecting an item
in the navigator would cause the content pane to be updated as illustrated.

The following tocitem would display the presentation in a popup window:

<tocitem target="platform" image="image document.gif” presentation=”javax.help.Popup”>
 JavaHelp platforms
</tocitem>
Sun Microsystems Inc. 56 JavaHelp V2.0 Specification

Java Software
JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

View in Main Window

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

View in Popup

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Similarly, the following example would display the presentation in a secondary window.

<tocitem target="platform" image="image document.gif”
presentationtype=”javax.help.SecondaryWindow” presentation=”mainSW”>

 JavaHelp platforms
</tocitem>

8.4.6 Viewer

Activation of help content from a viewer was not specified in the V1.0 specification but was
supported in the reference implementation with through lightweight-components. The content
viewer could display help in the viewer, a named secondary window or a popup as illustrated.

The following illustrates the content being displayed in a viewer. It uses the standard <a href>
in HTML:

Browsing Source
Sun Microsystems Inc. 57 JavaHelp V2.0 Specification

Java Software
View in Secondary Window

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

View in Main window

The following illustrates the content being displayed in a popup. It uses the object tag from the
reference implementation.

<OBJECT CLASSID="java:com.sun.java.help.impl.JHSecondaryViewer">
<param name="content" value="popup_gloss.html">
<param name="viewerActivator" value="javax.help.LinkLabel">
<param name="viewerStyle" value="javax.help.Popup">
<param name="viewerSize" value="400,250">
<param name="text" value="popup windows">
<param name="textColor" value="blue">
<param name="viewerName" value="glossary">
</OBJECT>
Sun Microsystems Inc. 58 JavaHelp V2.0 Specification

Java Software
JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

View in Popup

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

The following illustrates the content being displayed in a popup. It uses the object tag from the
reference implementation.

<object CLASSID="java:com.sun.java.help.impl.JHSecondaryViewer">
<param name="content" value="demo.html">
<param name="viewerName" value="demo">
<param name="viewerLocation" value="500,220">
<param name="viewerSize" value="500,500">
</object>

View in Secondary Window

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

No changes to the specification will be made to support displays to named secondary windows,
popups or custom presentations.
Sun Microsystems Inc. 59 JavaHelp V2.0 Specification

Java Software
9 Toolbar

A supplement of controlling presentations (see section 3.2.7 on page 21) is the ability to define
or customize the toolbar in a JHelp component. In order to accommodate the new HelpAction
in the HelpSet-Presentation section of a HelpSet file a new HelpAction class has been added.

• HelpActions could be used in Menus, however, they are not part of the reference
implementation and are not specified in the HelpSet.

9.1 HelpAction Interface

The HelpAction interface defines common behaviors for help actions. One use of help actions
would be the handling of common behavior for buttons included in a JHelp component’s tool-
bar.

Method Description

get/putValue(String key,

 Object value)

Get/set on of the object’s properties using the
associated Key.

is/setEnabled(boolean) is/set the HelpAction enabled.

get/setControl(Object) Get/set the control Object for the HelpAction.

9.2 AbstractHelpAction Class

The AbstractHelpAction class is a default implementation of the HelpAction interface.

Constructor Description

AbstractHelpAction(Object control,

 String name)

Creates an AbstractHelpAction

The constructor takes two argument: control and name. The control is an object that would ex-
hibit some type of control of the action. In the reference implementation the control object
would be the JHelp component.

9.3 HelpAction Extensions

Extensions of the AbstractHelpAction class are required set the help action name, implement
an appropriate event listener and return an appropriate image. The name is used to provide lo-
cale specific tooltip for the button. It is possible for an extension to set the name internally in
the extension’s constructor.

Extensions must implement an appropriate event listeners based on the implementation GUI
and action. For instance, the reference implementation GUI is AWT or Swing the event listen-
ers would be an AWT event listener. A button implementing an ActionListener would imple-
ment the method public void actionPerformed(ActionEvent e). Similarly a button
Sun Microsystems Inc. 60 JavaHelp V2.0 Specification

Java Software
implementing a MouseListener would implement the MouseListener methods. The implemen-
tation then determines the type of listener to add by inspecting the class for a given EventLis-
teners.

Additionally extensions must implement a method to retrieve implementation GUI specific im-
age if no imageID has been set. For instance, in the reference implementation is Swing based
so an appropriate image would be javax.swing.ImageIcon and the appropriate method
would be getImageIcon().

9.4 Supplied AWT/Swing HelpActions

A set of default HelpActions are included in the specification. This extensions are part of AWT/
Swing part of the specification and are specific to the AWT/Swing GUI.

Name Description

BackAction An action to move to the previous page in the
content viewer.

ForwardAction An action to move to the next page in the content
viewer.

PrintAction An action to print.

PrintSetupAction An action to print through the print setup.

HomeAction An action to load the HomeID in the content
viewer.

ReloadAction An action to reload the current document in the
content viewer.

SeparatorAction An non-action that creates a separator between
the actions.

Valid properties Awt/Swing HelpActions for the method get/putValue include icon for im-
age used in the button, tooltip for the tooltip text, access for accessiblity name.
Sun Microsystems Inc. 61 JavaHelp V2.0 Specification

Java Software
10 Context Sensitive Help

10.1 Context-Sensitive Help

Context-sensitive help in the JavaHelp system is organized around the notion of the ID-URL
map referred by the <map> section of a HelpSet file. The key concept is that of the Map.ID
which is comprised of a String/HelpSet instance pair. The String is intended to be unique within
the local map of the HelpSet. This is very important when considering HelpSet merging, oth-
erwise IDs would be required to be unique over all HelpSets that might ever be merged.

There are three parts involved in assigning Context Sensitive Help to an application:

1. Define the appropriate String ID-URL map,

2. Assign an ID to each desired visual object,

3. Enable some user action to activate the help.

10.1.1 Defining the ID-URL map

The Map interface provides a means for associating IDs (HelpSet.string) with URLs. One such
map is constructed from one or more map files that provide a simpler "String ID" to URL map-
ping, with the HelpSet being given either explicitly or implicitly.

JavaHelp has two classes that implement the Map interface: FlatMap and TryMap. A FlatMap
does not support nesting of other maps into it, while a TryMap does. A FlatMap is a simple im-
plementation while TryMap should support inverse lookups (for example, getIDFromURL)
more efficiently. The implementation of TryMap JavaHelp 1.0 is not particularly efficient.

Both FlatMap and TryMap have public constructors. The constructor for FlatMap takes two ar-
guments: the first one provides a URL to a property file providing a list of String and URL
pairs; the second argument is a HelpSet. The HelpSet is used together with each String-URL
pair to create the actual Map.ID objects that comprise the FlatMap. The constructor for TryMap
has no arguments: the Map is created empty and other Maps are added (or removed) from it.

The Map interface can also be implemented by some custom class. One such class could be used
to, for example, programatically generate the map.

10.1.2 Assigning an ID to Each Visual Object

The next step is to assign to each desired GUI object an ID that will lead to the desired help
topic. There are two mechanisms involved: an explicit ID, either a plain String, or a Map.ID, is
assigned to the GUI object; and there is a rule that is used to infer the Map.ID for an GUI object
based on its container hierachy.

The two basic methods to assign IDs are setHelpIDString(Component, String) and setHelp-
Set(Component, String). If both are applied to a Component, then a Map.ID is assigned to that
Component. If only setHelpIDString() is applied, then the HelpSet instance is obtained im-
plicitly, as indicated later. A method overload is provide for MenuItem objects.

These methods take a Component as an argument. The implementation may vary depending on
whether the argument is a JComponent or a plain AWT Component.
Sun Microsystems Inc. 62 JavaHelp V2.0 Specification

Java Software
The methods getHelpIDString(Component) and getHelpSet(Component) recursively traverse
up the container hierachy of the component trying to locate a Component that has been as-
signed a String ID. When found, the methods return the appropriate value. As before there is
also an overloaded method for MenuItem.

10.1.3 Enabling a Help Action

The final step is to enable for some action to trigger the presentation of the help data. CSH cur-
rently provides several ActionListener classes that can be used:

Name Description

DisplayHelpFromFocus() Locate the Component currently owning the focus, then
find the ID assigned to it and present it on the HelpBro-
ker. This is to be used by "Help" keys.

DisplayHelpAfterTracking() Start tracking events until a mouse event is used to
select a Component, then find the ID assigned and pres-
ent it. This is to be used by a "What's this" type of inter-
face.

DisplayHelpFromSource() Find the ID assigned to the source of the action event
and present it.

In addition, HelpBroker also provides some convenience methods that interact with these Ac-
tionListeners:

Name Description

enableHelpKey(root, stringID,

 helpSet)

Set the ID and helpset of root which will act as the
default help to present, then register an appropri-
ate ActionListener to be activated via the "Help"
key. DefaultHelpBroker uses CSH.DisplayHelp-
FromFocus as the ActionListener.

enableHelp(Component, stringId,

 helpSet)

Set the ID and HelpSet to the component. This
information is usually recovered either using the
"Help" key or through the DisplayHelpAfter-
Tracking class.

enableHelpOnButton(Component,

 stringId,

 helpSet)

Set the ID and HelpSet to the component, which
must be a "Button". When the button is "pressed"
the Help information given in the arguments will
be presented.
Sun Microsystems Inc. 63 JavaHelp V2.0 Specification

Java Software
Since these methods are from a specific HelpBroker, if a HelpSet is not associated with the GUI
object then the HelpSet of the HelpBroker will be used automatically.

10.1.4 Dynamic ID Assignment

For certain objects having a single ID per object is not sufficient. There needs to be a way to
programatically determine the ID based on cursor position, selection, or some other mechanism
inherent to the object. For example a Canvas might determine the ID based on the object cur-
rently selected on the canvas or alternatively from the mouse cursor position.

The following APIs have been added to CSH to support dynamic ID assignment:

Name Description

addManager(CSHManager) Registers the specified manager to handle dynamic
CSH.

addManager(index, CSHManager) Registers the specified manager to handle dynamic
CSH at the specified position in the list of manag-
ers.

getManager(index) Returns the manager at the specified position in list
of managers.

getManagerCount() Returns the number of managers registered.

getManagers() Returns array of managers registered.

removeAllManagers() Remove all of the dynamic CSH managers.

removeManager(CSH.Manager) Remove the specified manager from the list of man-
agers.

removeManager(index) Remove the manager at the specified position in the
list of managers.

Additionally a new interface has been defined in CSH.Manager:

Name Description

getHelpSet(Object, AWTEvent) Returns String representing the MAP.ID of the
object based on the AWTEvent

getHelpIDString(Object, AWTE-
vent)

Returns the HelpSet of the object based on the
AWTEvent

Instances of the CSHManager work as filters. CSH.getHelpIDString(comp) and CSH.getHelp-
Set(comp) are required call each registered CSH.Manager’s getHelpIDString or getHelpSet
methods. If the CSHManager doesn’t want to handle the component it returns null. If no CSH-
Sun Microsystems Inc. 64 JavaHelp V2.0 Specification

Java Software
Manager provides a HelpSet or HelpIDString for the component the CSH methods would use
the static HelpSet and HelpIDString (see section 10.1.2 on page 64 for more details on static
HelpSet and HelpIDString). As with statically defined HelpSet and HelpIDString a failure in
request for HelpSet and HelpIDString is propagated to the component’s parent.

10.1.4.1 Example Usage

An example usage for components with dynamically assigned HelpSet or dynamically gener-
ated HelpIDString is below:

class MyCSHManager implements CSHManager {
HelpSet hs;
JEditorPane editor;
MyCSHManager(JEdtiorPane editor, HelpSet hs) }

this.editor = editor;
this.hs = hs;

}
public HelpSet getHelpSet(Object comp) {

if (comp == editor) {
return hs;

}
return null;

}
public String getHelpIDString(Object comp) {

if (comp == editor) {
return getHelpIDFromCaretPostion(editor);

}
return null;

}
}

The CSHManager is added to the CSH list of managers as follows:

CSH.AddCSHManager(new MyCSHManager(editor, hs));

10.2 Help Support for JDialogs

It is often useful to associate help information with dialog boxes using a Help button. Ideally
the standard javax.swing.JOptionPane would have direct support for this but, due to
timing constraints this was not possible. Expect full support for this feature in a forthcoming
version of Swing.
Sun Microsystems Inc. 65 JavaHelp V2.0 Specification

Java Software
11 Content Search

11.1 Search API

JavaHelp provides full-text searching of help topics. Development of full-text searching raised
interesting questions, both in the implementation and in the specification. For example, wheth-
er the search database is created before or during queries, and how the format of the search da-
tabase is specified.

The search API javax.help.search.* can be used to create and query the search database.
The default NavigatorView, SearchView knows how to interact with any subclass of Search-
Engine. Similarly the search database can be created through the IndexBuilder class.

One of the benefits of the javax.help.search API is that it enables the use of search engines
that require moderately complex database formats without the difficult and constraining task
of specifying these formats in full. One such search engine is the one provided in Sun's refer-
ence implementation section Appendix B on page 104.

The intention of the javax.help.search package is to provide insulation between client and
customers of a full-text search database in the context of the javax.help package. It is impor-
tant to emphasize that although the javax.help.search API is intended to be of general ap-
plicability, it is not intended to be a replacement for more powerful query mechanisms.

11.2 Search Database Creation

Search databases are created through instances of IndexBuilder. The parsing of each file is
specific to its MIME content; this is encoded in the notion of an IndexerKit. An indexer kit pro-
vides a parse() method that knows how to parse the specific MIME type and call back into
the IndexBuilder instance to capture the information of this source.

When capturing search information there are a number of parameters that you can configure
using a ConfigFile:

• Change the path names of the files as they are stored in the search database. This is
useful when you create the search database using paths to topic files that are different
from the paths the help system will later use to find them.

• Explicitly specify the names of the topic files you want indexed
• Specify your own list of stopwords

11.2.1 Stopwords

You can direct the JavaHelp system full-text search indexer to exclude certain words from the
database index--these words are called stopwords. The default stopwords are:

a all am an and any are as
at be but by can could did do
does etc for from goes got had has
have he her him his how if in
is it let me more much must my
Sun Microsystems Inc. 66 JavaHelp V2.0 Specification

Java Software
nor not now of off on or our
own see set shall she shouldso some
than that the them then there these this
those thoughto too us was way we
what when where which who why will would
yes yet you

11.2.2 ConfigFile Directives

A config file may contain the following directives

Directive Description

IndexRemove path Remove a path that is a prefix to the given files

IndexPrepend path Prepend path to the names of the given files.

File filename Request that the filename be processed

StopWords word, word,
word...

Set the stopwords to the ones indicated

StopWordsFile filename StopWordsFile must contain a list of stopwords, one stop-
word per line.

11.3 Search Database Use

The javax.help.search package is used in JavaHelp 1.0 by SearchView. This view expects
an engine property that specifies the name of the subclass of javax.help.search.SearchEn-
gine to use when making queries. The default value of this property is com.sun.ja-
va.help.search.SearchEngine.

The steps involved in using the search engine from a SearchView are:

• A SearchView is instantiated, for example, when the default HelpBroker for the
HelpSet is created.

• When the first query is made, the engine property of the view is obtained to determine
what SearchEngine to instantiate. The data and other attributes are passed to this
instance.

• For a query, a SearchQuery instance is obtained, then the query is passed to it.
• Hits found are either obtained directly, or they are generated as events.

More details may be added in the next iteration of the specification.
Sun Microsystems Inc. 67 JavaHelp V2.0 Specification

Java Software
12 Merge

12.1 Introduction

JavaHelp provides a mechanism for merging HelpSets. Constituent HelpSets can be dynami-
cally removed from the merged HelpSet, even while the merged HelpSet is displayed. When
HelpSets are merged there is always a master HelpSet into which other HelpSets are merged.

In addition, a HelpSet file can use the <subhelpset> tag to statically include HelpSets (see sec-
tion 3.2.6 on page 20), this behavior is identical to adding the subhelpset to the enclosing Help-
Set, except that if the subhelpset file does not exist, it is ignored.

Here are some examples where merging might be appropriate:

• An application suite may be comprised of a collection of constituent applications. As
constituent applications are purchased and installed, their help information can be
merged with help information from the other applications in the suite.

• A Builder tool uses JavaBeans to construct programs. Each JavaBean provides help
information about its functionality. The help information of the constituent JavaBeans
can be listed in the TOC, in the index, and be accessible to searches.

• When JavaBeans are used to dynamically extend the functionality of an application
(sometimes this functionality is described as plug-in) the JavaBeans contain help
information that conforms to the nature of the application. This help information can be
meaningfully merged before being presented to the user.

12.2 Merging Rules

The default merging rules depend on the view mergetype (see section 3.2.5 on page 19). There
are four mergetypes in JavaHelp:

javax.help.SortMege Collate with the existing view data according to
HelpSet’s locale collation rules.

javax.help.Append Add to the end of the existing view data.

javax.help.Unite-AppendMerge Unite any elements, including sub-elements, at the
same level in the merged HelpSet to elements,
including sub-elements, with the same name in the
initial HelpSet. Append remaining elements in the
merged HelpSet at the end of the initial HelpSet.
Add to the end of the existing view data.

javax.help.NoMerge No merging is done. Only valid on a View.

Each view type will determine it own default merging type and will specify which, if any, of
the merging rules it will support. A view type may provide no support for merging.
Sun Microsystems Inc. 68 JavaHelp V2.0 Specification

Java Software
12.3 The API

The basic API comprises the HelpSet.add(HelpSet) method, and its corresponding HelpSet.re-
move(HelpSet) method. These methods fire HelpSetEvent events to the HelpSetListeners that
have registered interest in them. This is how the ComponentUIs for TOC, Index, and Search
views are notified of these changes and react to them.

When a HelpSet A is added to a HelpSet B, all the views in A are compared to the views in B;
if a view in A has a name that is the same as another view in B, then it is considered for merging
into B, otherwise it is not.

When considering merging a view Va into a Vb the following happens:

• The navigator Nb of Va is obtained.

• Nb.canMerge(Va) is invoked to determine if the views
• can be merged.
• If then can be merged, then Nb.merge(Va) is invoked.

If later the HelpSet A is removed from HelpSet B:

• Nb.remove(Va) will be invoked.

The merging of the view data API comprises the abstract class Merge, consisting of a
Merge(NavigatorView, NavigatorView) constructor and Merge.processMerge(TreeNode)
method, MergeDefaultFactory.getMerge(NavigatorView, NavigatorView), and a set of merge
utilties in MergeUtilities. Each mergetype (see section 12.2 on page 70) will implement a con-
crete class extending Merge.

When the Nb.merge(Va) is invokedMergeDefaultFactory.getMerge is invoked returning a
Merge object. Invoking Merge.processMerge on the toplevel node will merge the data of the
slave into the master. Merge.processMerge can recursively called to support changes of mer-
getypes on each data item. The master view data viewtype will supercede the viewtype settings
in a slave in the event of a conflict.

12.4 Merging TOCs

TOCView and JHelpTOCNavigator implement a merging rule that allows any TOCView with
the same name to be merged. The resulting presentation adds the new TOC data as the last sub-
tree of the top level of the original TOC.

A TOCView may have no <data> tag; such a view shows as an empty tree. This is useful for
what is sometimes called "dataless" master views into which other views can merge.

The default merge type for a TOCView is append. This will provide backward compatible sup-
port for V1.0 implementations. TOCView supports sort, append, and unite-append merge
types.

12.5 Merging Indices

IndexView and JHelpIndexNavigator implement a merging rule that allows any IndexView
with the same name to be merged. The resulting presentation adds the new index data as the
Sun Microsystems Inc. 69 JavaHelp V2.0 Specification

Java Software
last subtree of the top level of the original index. No attempt to sort the data is provided in the
standard types.

An IndexView may have no <data> tag; such a view shows as an empty tree. This is useful for
what is sometimes called "dataless" master views into which other views can merge.

The default merge type for IndexView is append. This will provide backward compatible sup-
port for V1.0 implementations. IndexView supports sort, append, and unite-append merge
types.0

12.6 Merging Glossaries

The merging rule for Glossaries are the same as those of Indices section 12.5 on page 72.

12.7 Merging Favorites

The default merge type for FavoritiesView is none as favorites are stored in a single file in the
user’s directory.

12.8 Merging Full-Text Search Databases

SearchView and JHelpSearchNavigator implement a merging rule that allows any Search-
View with the same name to be merged. The resulting presentation adds the SearchEngine
from the new view to the previous list--query results from all the SearchEngines are collated
and presented together.

A SearchView may have no <data> tag; such a view produces no matches against any queries.

The default merge type for a SearchView is sort. This will provide backward compatible sup-
port for V1.0 implementations. Append and unite-append merge types are not supported in
SearchView.

12.9 Overriding Mergetype

The view mergetype can be overridden with the mergetype attribute on elements of certain
view types. Both Table of Contents and Index support overriding the default mergetype by set-
ting the mergetype attribute on <tocitem>, or <indexitem> tags.

If the view supports nesting of elements, the override applys to nested elements as well. If du-
plicate entries exist in both views, the mergetype specified in the first view will override the
second view.

12.10 Examples

The following examples illustrate how the various merge types work

12.10.1 Example: Append Merge

Append merge appends the second view data to the first view. It places a title determined from
the view’s HelpSet <title> tag as the top level entry and indents the view’s data under that title.
Sun Microsystems Inc. 70 JavaHelp V2.0 Specification

Java Software
Append is useful when the desired result is to combine two views together into one presenta-
tion, but still maintain the overall hierarchy of each view. Unlike sort, duplicate entries are re-
tained.

JWS TOC

Tutorial and Examples
Introducing the Java WorkShop
Tutorial One: Creating the Blink Project
Tutorial Two: Editing Project Attributes
Tutorial Three: Fixing Errors in Source Code

JavaBeans
Beans In Java WorkShop
Tips on Using Beans Effectively

Visual Java GUI Builder
GUI Builder Palette
Laying Out the Interface

The Help Viewer
Overview
Menus Descriptions
Shortcut Keys
Searching for Topics

The Web Browser
Overview
Using the Web Browser

JS TOC

Java Studio Windows
 Main window
 Design Window
 GUI Window
Java Studio Designs
 Creating a Design
 Adjusting the Layout of a Design
 Debugging a Design
 Saving and Loading a Design
 Generating a Packaged Design
 Printing a Design
The Help Viewer
 Overview
 Menus Descriptions
 Shortcut Keys
 Searching for Topics

Merged result using append

The output using append is as follows:

Tutorial and Examples
Introducing the Java WorkShop
Tutorial One: Creating the Blink Project
Tutorial Two: Editing Project Attributes
Tutorial Three: Fixing Errors in Source Code

JavaBeans
Sun Microsystems Inc. 71 JavaHelp V2.0 Specification

Java Software
Beans In Java WorkShop
Tips on Using Beans Effectively

Visual Java GUI Builder
GUI Builder Palette
Laying Out the Interface

The Help Viewer
Overview
Menus Descriptions
Shortcut Keys
Searching for Topics

The Web Browser
Overview
Using the Web Browser

Java Studio Windows
 Main window
 Design Window
 GUI Window
Java Studio Designs
 Creating a Design
 Adjusting the Layout of a Design
 Debugging a Design
 Saving and Loading a Design
 Generating a Packaged Design
 Printing a Design
The Help Viewer
 Overview
 Menus Descriptions
 Shortcut Keys
 Searching for Topics

12.10.2 Example: Sort Merge

Sort merge collates at each level of the combined view according to the collation rules of the
HelpSet locale. Duplicate entries where the name and the id associated with the entries are the
same are ignored. The entry, "The Help Viewer" and all of its subentries, is an example of how
duplicate entries in separate views are handled.

If the entry’s name is the same as another entry at a given level but the id associated with the
entry is different, then both entries are printed with the HelpSet title (<title>) applied to the end
of the name as a distinquishing characteristic. In the example below the Edit and File Menu
entries point to different ids. They have been distinquished with a "(Java Workshop)" and a
"(Java Studio)".

Sort merge is useful when you have information, such as an Index, that is collated. It is not use-
ful when you have information that is in a non collated hierarchical form, such as a TOC.

JWS Index

Menus
 File Menu
 Edit Menu
 Build Menu
 Debug Menu
 Help Menu
Sun Microsystems Inc. 72 JavaHelp V2.0 Specification

Java Software
Toolbars
 Main Toolbar
 Edit/Debug Toolbar

JS Index

Developer Resources
Examples
 Step-by-step Example
 List of Additional Examples
Menus
 File Menu
 Edit Menu
 View Menu
 Help Menu
Toolbars
 Main Toolbar
 Composition Toolbar

Merged result using sort

The output of the sort merge is a follows:

Developer Resources
Examples
 List of Additional Examples
 Step-by-step Example
Menus
 Build Menu
 Debug Menu
 Edit Menu (Java Workshop)
 Edit Menu (Java Studio)
 File Menu (Java Workshop)
 File Menu (Java Studio)
 Help Menu (Java Workshop)
 Help Menu (Java Studio)
 View Menu
Toolbars
 Main Toolbar (Java Workshop)
 Main Toolbar (Java Studio)
 Edit/Debug Toolbar
 Composition Toolbar

12.10.3 Example: Unite-Append Merge

Unite-append preserves the hierarchy of the masterview. If the master view is a data less view
the hierarchy from the first view merged is preserved. At any level it merges entries from the
second view with the master view if the entry’s name is the same.

Entries that don’t have the same name are appended to the master view at their respective lev-
els. If the entry’s name is the same but the id is different both entries are displayed and some
sort of distinquishing characteristic is applied to the end of the name.
Sun Microsystems Inc. 73 JavaHelp V2.0 Specification

Java Software
Unite-append is useful to maintain the hierarchy of the master view. That master view may be
a "template" for merging the others against. Entries not found in the master view are appended
at the end. The hierachy of the second view is maintained subordinate to the master view.

The animal TOC

Description
Habitat
Pictures

A Wombat

Description
 What’s a Wombat
Habitat
 Where a Wombat lives
Pictures
 Cute Wombats
Sounds
 Fierce Wombats

A Water Rat

Description
 What’s a Water Rat
Habitat
 Where a Water Rat lives
Pictures
 Water Rats
Sounds
 Singing Water Rats

Merged result using unite-append

Description
What’s a Wombat
What’s a Water Rat

Habitat
Where a Wombat lives
Where a Water Rat lives

Pictures
Cute Wombats
Water Rats

Sounds
Fierce Wombats
Singing Water Rats
Sun Microsystems Inc. 74 JavaHelp V2.0 Specification

Java Software
13 JavaHelp Class Structure

13.1 Packages

JavaHelp V2.0 is a optional package for Java 2. The API is defined in the javax.help package,
with the exceptions of the search API classes, which are defined mainly in the javax.help
package, but other packages are also involved. The complete list is:

Package Description

javax.help Main package

javax.help.event Event & Listener classes

javax.help.plaf Interface to the ComponentUI classes

javax.help.plaf.basic Basic look and feel; currently no specific PLAF classes are needed

javax.help.resources Localization classes.

javax.help.tagext JSP tag extension classes.

javax.help.search search classes.

An implementation of the extension may also include some implementation classes that are not
intended to be used directly. The Reference Implementation also includes additional classes of
utility to Help authors.

13.2 API Structure

This section describes the general principles behind the API classes. More details are available
in the javadoc information on the classes. The reference implementation also provides code
fragments exemplifying the use of these classes.

As indicated in Overview.html, the API classes in javax.help are conceptually structured in
several collections. The different collections are addressed to different tasks and users. The
boundaries between some of these collections are not sharp, but the classification helps to re-
duce the number of concepts, and actions, needed to perform simple tasks.

• Basic Content Presentation
• Complete Access to JavaHelp Functionality
• Swing classes
• Full-Text Search
• JSP tag extensions
Sun Microsystems Inc. 75 JavaHelp V2.0 Specification

http://java.sun.com/java2

Java Software
13.2.1 Basic Content Presentation

Some applications only are interested in presenting some help information to the user, mini-
mizing the interaction between the help author and the application developer. The basic actions
to perform are:

• Locating a HelpSet, perhaps after localization;
• Reading that HelpSet, including any related data, like Map files, TOCs, Indices, and

Search database; and
• Visually presenting this HelpSet.

The abstraction of a HelpSet is javax.help.HelpSet, while the abstraction of its visual presen-
tation is javax.help.HelpBroker. A HelpBroker provides for some interaction with the presen-
tation regardless of the actual visual details; the default presentation is DefaultHelpBroker.
An application can provide on-line help using only these two classes.

Sub-HelpSets listed in the HelpSet file using the <subhelpset> tag will be merged automatical-
ly before presenting them to the user.

These two classes (an ancillary classes, like Exception classes) do not have any dependency on
Swing for their definition, although DefaultHelpBroker depends on Swing for its implemen-
tation.

13.2.2 Detailed Control and Access

The HelpBroker interface provides substantial control of the presentation of a HelpSet, with-
out leaking unwanted GUI details of the presentation. For example, this interface can be used
to interact with the two-pane default presentation of the reference implementation, as well as
to interact with some presentation embedded within the application. Additionally, since the
HelpBroker does not use any Swing types or concepts, it does not require Swing for its imple-
mentation. But some applications will want access to such details as the map from ID to URLs.
JavaHelp provides classes for this.

13.2.3 Extensibility

Content extensibility is described through a NavigatorView which provides access to some
context information plus a way of presenting this information. TOCView, IndexView, Glossa-
ryView, FavoritiesView and SearchView are standard views for Table Of Contents, Index,
and full-text search.

The standard views yield standard JHelpTOCNavigator, JHelpIndexNavigator, and
JHelpSearchNavigator Swing components. The standard views also provide access to the
content; this access uses subclasses of TreeItem.

New views can be added; for instance a new TOC presentation can be obtained by subclassing
TOCView and just changing the JHelpNavigator returned by it. Another view may keep the
same JHelpNavigator but use a format for the encoding of the view data (perhaps even gener-
ating the data dynamically); this is done by redefining the getDataAsTree method. The presen-
tation of new Views can be derived from the standard ones by subclassing.
Sun Microsystems Inc. 76 JavaHelp V2.0 Specification

Java Software
13.2.4 Swing components

JavaHelp provides a collection of Swing components that are used to implement the Defaul-
tHelpBroker and can also be used directly, as in embedded help. The components follow the
standard MVC from Swing. There are two main models: HelpModel and TextHelpModel.

HelpModel models changes to the location within a HelpSet; components that want to respond
to these changes should listen to events originating within the model - this is how synchronized
views work. The location within the model is represented by objects of type Map.ID; these cor-
respond to a String (an ID), and a HelpSet providing context to that ID. A HelpSet needs to be
explicitly given (in general) because of the ability of merging HelpSets. TextModel provides
additional information when the content is textual. A TextModel can queried for the current
highlights, which a client may present visually. The DefaultHelpModel is the default model
implementing both models.

JHelpContentViewer is the Swing component for the content, while context corresponds to
several subclasses of JHelpNavigator. JHelp is a common grouping of these classes into syn-
chronized views of content.

The basic structure of the Swing classes is shown in the next figure; for additional information
about the Swing classes check the Swing Connection home page

A Swing control acts as the main interface to developers. All ComponentUI objects for a par-
ticular look and feel are managed by a JFC object called UIManager. When a new Swing com-
ponent is created, it asks the current UIManager to create a ComponentUI object. Vendors or
developers can ship different ComponentUI's to suit their specific needs.

A Swing control then delegates the tasks of rendering, sizing and performing input and output
operations to the ComponentUI. The ComponentUI's installUI and deinstallUI methods
add behavior and structure to the raw Swing component by adding listeners, setting the layout
manager, and adding children.

The Swing model defines the component's non-view-specific state. The Swing component
communicates changes to the model and listens (through listeners) to the model for changes.
Finally, the model provides data to the ComponentUI for display.

The ComponentUI objects in the JavaHelp Swing classes are currently fully defined in terms
of the other components, hence, there are only javax.help.plaf.basic classes, and none of
the other PLAF packages are needed.
Sun Microsystems Inc. 77 JavaHelp V2.0 Specification

Java Software
13.2.5 Context Sensitive Help

JavaHelp supports a Map between identifiers and URLs. FlatMap and TryMap are two imple-
mentations; sophisticated users can provide their own implementations to satisfy different re-
quirements (for example, the map data may be generated dynamically). The main class used to
associate specific content with graphic objects is CSH.

13.2.6 Search

JavaHelp supports a standard full-text search view and navigator. The view interacts with a
search engine through the types in the javax.help.search package. The reference implemen-
tation provides a search engine implementing these interfaces but others can also be used; the
specific search engine used is part of the information given to the search view. By doing this
separation we provide the capability of full-text searching while not imposing specific formats.

The search package has not conceptual dependencies on any other portions of JavaHelp, and it
can be used independently. The reference implementation provides one such implementation
packaged in a JAR file that depends only on the basic platform.
Sun Microsystems Inc. 78 JavaHelp V2.0 Specification

Java Software
Apendix A
JavaHelp 2.0 - Scenarios

A.1 Introduction

This document contains a number of scenarios that illustrate ways the JavaHelp system can be
used to provide online help for different types of Java programs in a variety of network envi-
ronments. These scenarios attempt to illustrate the flexibility and extensibility of the JavaHelp
system.

Scenarios are presented in four areas:

Invocation Mechanisms Scenarios that describe different ways that the JavaHelp sys-
tem can be invoked from applications

Presentation Scenarios that describe different ways that the JavaHelp sys-
tem can be used to present help information. These scenarios
also illustrate different methods for deploying the JavaHelp
system classes and help data.

Search Scenarios Scenarios that describe different ways that full-text searches
of JavaHelp system information can be implemented

Packing Scenarios Scenarios that describe different ways that JavaHelp system
data can be encapsulated and compressed using Java Archive
(JAR) files

Merge Scenarios Scenarios that describe ways that JavaHelp system data can
be merged. You can use the merge functionality to append
TOC, index, and full-text search information from one or
more HelpSets to that of another HelpSet.

Code examples complementing these scenarios can be found in the JavaHelp System 2.0 Ref-
erence Implementation available at http://java.sun.com/products/javahelp.

A.2 Invocation Mechanisms

These scenarios describe the different ways the JavaHelp system can be invoked. It is divided
into two sections: Application Invocation and Internally Initiated Help

A.2.1 Application Invocation

These scenarios describe way of invoking the JavaHelp system within an application.
Sun Microsystems Inc. 79 JavaHelp V2.0 Specification

Java Software
A.2.1.1 User Initiated Context Sensitive Help

The JavaHelp system is often invoked from an application when a user chooses an item from
a Help menu, clicks on a Help button in an application GUI, or uses one of the context sensitive
help gestures to request help on a GUI component.

The JavaHelp system provides a simple interface for requesting the creation of a help presen-
tation by requesting that a topic ID (identified by a string) be displayed. Topic IDs are associ-
ated with URLs in the map file(s) mentioned in the HelpSet file.

For example, when coding a file chooser dialog box, a developer requests that the topic ID
fc.help be displayed when the Help button at the bottom of the dialog box is clicked. In the
HelpSet file (or in some cases the map file referred to in the HelpSet file) the ID fc.help is
defined to be a file named FileChooser.html using the following syntax:

<mapID target="fc.help" url="FileChooser.html"/>

Separating the specification of actual file names from the program code, provides content au-
thors the freedom to control the information that is associated with the topic ID.

A.2.1.2 Field-level Context-Sensitive Help

Field Level Context-sensitive help (sometimes included in the term What-is help) is help infor-
mation that describes graphical components in an application GUI. It is triggered by gestures
that activate context-sensitive help and then specify the component in question. See section on
page 63 for more details.

A.2.1.3 Window-level Context-Sensitive Help

Window-level help is help information that describes the correct graphic component with fo-
cus, or an entire dialog in an application GUI. It is triggered by an operating system specific
keystoke, generally either “F1” or “Help” keys, that activate context-sensitive help and speci-
fies the component to get help on based on focus. See section on page 63 for more details.

A.2.1.4 System Initiated Context-Sensitive Help

Recent products are exploring the notion of a Helper, or an Assistant, an example is the assis-
tant in MS's Office 97. A helper is a mechanism that reacts to state and state transitions in ap-
plications and provides guidance and suggestions to the user. Such a mechanism requires
significant close interaction between the application and the information presented to the user.

A.2.2 Internally Initiated Help

These scenarios describe way of invoking help once inside the JavaHelp system.

A.2.2.1 Navigators

Each navigator provides a mechanism for changing the current topic displayed in the content
viewer. For instance the selecting of a TOC item in a TOCNavigator would present the content
tied to that TOCItem.
Sun Microsystems Inc. 80 JavaHelp V2.0 Specification

Java Software
A.2.2.2 View

The help content viewer also provides a mechanism for displaying additional content. The new
content can either replace the current content or display the new content in a an alternative pre-
senation format.

A.3 Presentation

The following scenarios illustrate different ways the JavaHelp system can be used to present
information. Each invocation mechanism is designed to allow presentations in each of the fol-
lowing scenarios.

A.3.1 Main Window

The main window is the main presentation for the JavaHelp system. By default it is a tri-paned
fully decorated window consisting of a tool bar, navigator pane, and help content viewer. Most
reference implementation would keep the main-window resident in memory when the window
is not visible.

Application
JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

A.3.2 Secondary Window

A secondary window is similar to the main window in that it is a fully decorated window. By
default it only contains a help content viewer though could optionally include a toolbar and/or
navigators. Unlike the main window it is destroyed by default on closing. Additionally, sec-
ondary windows are named. If a named window is visible the current contents to be replaced.
Sun Microsystems Inc. 81 JavaHelp V2.0 Specification

Java Software
Application
JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

A.3.3 Popups

Popups contain only a content viewer. They are intended to provide immediate help and then
allow the user to continue working. Once a popup looses focus, it is destroyed.

Application

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

A.4 Deployment

The following scenarios illustrate different ways that the JavaHelp system can be used to pres-
ent and deploy Help information.

A.4.1 Information Kiosk

The "kiosk" scenario is one where documents are presented independent of an application.
Sun Microsystems Inc. 82 JavaHelp V2.0 Specification

Java Software
An example on the Solaris platform is AnswerBook -- a technology used to display all of Sun's
documentation online. All that is required is a help browser that can be launched to present and
navigate through the information.

Launcher

<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help Data

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

In JDK1.2, a JAR file can indicate a containing Application class that will be invoked automat-
ically by the system (by passing it to a "java -jar" command).

A.4.2 Stand-Alone Application

The simplest scenario is one in which the Java application runs locally and accesses help data
installed on the same machine.
Sun Microsystems Inc. 83 JavaHelp V2.0 Specification

Java Software
Application

<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help Data

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

The application requests the creation of a JavaHelp instance, loads the help data on it, and then
interacts with this instance, either by requesting the help information be presented and hidden,
or by requesting a specific topic (identified by an ID) be presented.
Sun Microsystems Inc. 84 JavaHelp V2.0 Specification

Java Software
A.4.3 Network Application

When the help data is accessed across the network, the scenario is essentially the same -- the
location of the data is actually transparent.

<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help Data

Application

network

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

A.4.4 Embedded Help

Information can also be presented embedded directly in application windows. The JFC com-
ponents that implement the JavaHelp specification are embedded directly into the application
Sun Microsystems Inc. 85 JavaHelp V2.0 Specification

Java Software
frame. The application can create its own customized presentation, by using the JFC compo-
nents from the reference implementation.

<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help Data

Application

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

JavaHelp

JavaHelp can be used in a wide variety of ways. This is one of those ways.

There are any number of other scenarios that can be used.

These scenarios can vary very very much. In this case the help window is embedded directly into the application.

These scenarios can vary very very much. In this case the help window is embedded directly into the application.

Embedded help is inherently application-specific since the application controls where each of
the presentation UI components are located. The JavaHelp reference implementation is orga-
nized so that most applications will be able to achieve their needs very easily.
Sun Microsystems Inc. 86 JavaHelp V2.0 Specification

Java Software
A.4.5 Component Help

Many current applications are composed of a collection of interacting components. Examples
range from large applications like Netscape navigator (with plugins) to applications where Ja-
vaBeans components are connected together using JavaScript or Visual Basic.

Application

<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Bean1 Help Data

Bean1

Bean2

<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Bean2 Help Data

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

The help information can be merged in different ways. For instance, the table-of-contents, in-
dex, and full-text search information from each component may be displayed one after the oth-
er to create a new, unified help system.

As HelpSets are loaded/unloaded into a JavaHelp instance, the information presented needs to
be updated. The JavaHelp system provides a flexible mechanism for merging this information.

A.4.6 A Help Server

In some cases, it may be necessary to separate the application from the process that presents
the help information. In this case the application process can make requests into a JavaHelp
Sun Microsystems Inc. 87 JavaHelp V2.0 Specification

Java Software
process (help server) through an RPC mechanism (the RPC may be wrapped in a library and
be invisible to the application developer).

App 1

<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help
Server

RPC

App 2
RPC

<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

App 2 Help Data

App 1 Help Data

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

The help server model is useful if the application is not written in Java and does not include a
JVM. It would also be useful for a suite of Java applications that can share a common help serv-
er.

A.4.7 Web Pages and Applets

This scenario describes how the JavaHelp system is used from within web-based applications.
In this case an applet or some other triggering entity (perhaps a JavaScript event) on an HTML
page creates a HelpSet object and then invokes HelpSet.createJavaHelp().

This scenario can have a number of variations. Here are a five:
Sun Microsystems Inc. 88 JavaHelp V2.0 Specification

Java Software
• In one case, the browser platform contains a customized implementation of the
JavaHelp system. This implementation may have been delivered with the browser, or it
may have been downloaded by the client into the CLASSPATH. The implementation
may use the Swing HTML viewer, or, more likely, it may use some the HTML viewer
that comes with the Web Browser.

HTML
Page

Applet

<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help Data

Web Browser

applet.jar

network

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

• Since the JavaHelp system is a Java "standard extension," it is possible that a fully-
conforming JDK browser may not have it in its CLASSPATH. In this case, if the
HTML page refers to the standard JavaHelp system implementation, the standard
extension machinery will automatically download the implementation and execute it.
Since our implementation is quite small, this approach will often be practical. Browsers
may choose to provide some way of easily installing extensions downloaded through
this mechanism.
Sun Microsystems Inc. 89 JavaHelp V2.0 Specification

Java Software
This situation is depicted in the next picture where, for variety sake, we have changed the help
presentation so the navigator is separate from the content.

HTML
Page

Applet

Web Browser

JavaHelp

<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help Data

JavaHelp
JavaHelp can be used in a wide variety of ways. This is one of those ways.

There are any number of other scenarios that can be used.

They are described in other places in this documentation.

Bla blabla bla bla blaaaaa.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

applet.jar

jh.jar

network

The corresponding APPLET tag may look something like this:

<APPLET
 CODE=javax.help.HelpButton
 ARCHIVE="JavaHelpDefault1_0.jar"
>
<PARAM
 NAME=HelpSet
 VALUE=MyHelp.JAR>
</APPLET>

• In some cases, some client browsers may not have a fully-conforming Java Virtual
Machine. In that case we can use the Java Plug-in technology to request a compliant
Java Virtual Machine. The request may lead to a download request if the virtual
Sun Microsystems Inc. 90 JavaHelp V2.0 Specification

http://java.sun.com/products/plugin

Java Software
machine is not available locally; once installed later requests will proceed with no
download step. Once the appropriate JVM has been started, the situation is equivalent
to the previous two steps. The following figure illustrates this:

HTML
Page

Applet

Web Browser

JavaHelp

<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help Data

applet.jar

Java Plug-in

network

jh.jar

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

The JavaHelp system provides mechanisms for extending navigational views and content dis-
play, the classes providing this can be downloaded automatically using the standard classloader
mechanisms of the Java platform (e.g. using ARCHIVE or CLASSPATH).
Sun Microsystems Inc. 91 JavaHelp V2.0 Specification

Java Software
• In the next scenario the client browser is used to launch a full-featured application with
a single click. In this case we can use the Java Web Start technology. Java Web Start
will download the application if it isn’t already present on the user’s computer. The
application is then activated. The following figure illustrates this:

HTML
Page

Web Browser

<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help Data

app.jar

network

jh.jar

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

Java Web
Start

CacheApp

• In the final scenario the client browser will handle all of the display using HTML or
some combination of HTML, DHTML and/or JavaScript. In this scenario the server is
a Java Server supporting Java Server Pages (JSP). The client browser submits a JSP
request to the server. The server transforms the JSPs into Java Servlets and accesses the
HelpData on the server. Results are returned to the client browser in the form of HTML,
DHTML and/or JavaScript. An illustration of this scenario can be found in section 7.2
on page 40.

A.5 Search Scenarios

The JavaHelp system supports an extensible full-text search mechanism using the extension
framework (see section 2.5.6 on page 13) mechanism, plus a Search interface. The JavaHelp1.0
Sun Microsystems Inc. 92 JavaHelp V2.0 Specification

http://java.sun.com/products/javawebstart

Java Software
specification requires all implementations to support some search types and formats. This
mechanism can be used to support a number of different search scenarios:

Client-Side The search database is downloaded from the server, then
searched on the client

Server-Side The search database and search engine are located on the
server

Stand-Alone The search database is included as part of the HelpSet and
the search occurs in the application

A.5.1 Client-Side

In a client-side search, searching is done locally on the "client-side", but the search data origi-
nates on the "server-side". This commonly occurs with web-based applications (applets). The
help data usually resides on the same server as the applet code. When a search is initiated the
Sun Microsystems Inc. 93 JavaHelp V2.0 Specification

Java Software
search data is downloaded from the server, read into the browser's memory, and searched. The
content files are downloaded only when they are presented.

<H1>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<H1>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help Content

Application

Search
Data

Search
Engine

JavaHelp

1. Search is initiated

2. Search engine loads database

3. User (or application) chooses a
“hit”

4. Content is loaded and displayed

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

Time is required for the search database to be downloaded during the initial search. Once
downloaded the data can be kept in memory or in a temporary file on the client machine. Once
the database is downloaded, searches are quite fast.
Sun Microsystems Inc. 94 JavaHelp V2.0 Specification

Java Software
A.5.2 Server-Side

In a server-side search, both the search data and the content files are located on the server side;
only the results of the search are downloaded to the client.

<H1>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<H1>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help Content

Application

Search
Data

Search
Engine

JavaHelp

1. Search is initiated

2. JavaHelp requests search from
server

3. Server-side search engine
searches database and delivers
“hits” to application

4. User (or application) chooses a
“hit”

5. Content is loaded and displayed

network

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

This is another option for applets. It permits developers to use a choice of commonly available
search engines and can provide quick start-up time (especially if the search engine is started
ahead of time). On the other hand, it requires additional administrative work to get the search
engine installed. Note that this approach works very well with Java servlets.
Sun Microsystems Inc. 95 JavaHelp V2.0 Specification

Java Software
A.5.3 Stand-Alone

In a stand-alone search, all of the components are local (search engine, search database, help
content). From an implementation point-of-view, the stand-alone search is quite similar to the
client-search except that there is no need to cache the search data in memory or in local files.

<H1>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<H1>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help Content

Application

Search
Data

Search
Engine

JavaHelp

1. Search is initiated

2. Search engine loads database

3. Search engine searches
database and delivers “hits” to
application

4. User (or application) chooses a
“hit”

5. Content is loaded and displayed

network

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

Note that help content files can be accessed locally and/or across a network.

A.6 Packaging Scenarios

The following diagrams represent typical packaging scenarios. These scenarios are intended to
be exemplary and are not exhaustive.

The first picture represents a project in which the map file is packaged together with most (all?)
of the content files. The "!" syntax is used to specify the URLs relative to the JAR where the
Sun Microsystems Inc. 96 JavaHelp V2.0 Specification

Java Software
map is located. The HelpSet file is packaged outside of the JAR file, perhaps to simplify up-
dates later on.

Ajar.jar

<H1>
Introduction
</H1>
<P>
This topic introduces the user to
a great product.

<HI>
Getting Started
</H1>
<P>
In order to install this
 product you must insert

MyMap.jhm

File1.html

File2.html

.
.
.

HelpSet File

<maps>
 <mapref location=”jar:file:/c:Ajar.jar!/MyMap.jhm”/>
</maps>

..
.

..
.

<mapID target=”file1” url=”File1.html”/>
<mapID target=”file2” url=”File2.html”/>
Sun Microsystems Inc. 97 JavaHelp V2.0 Specification

Java Software
In the following scenario, the map file and the JAR file are in different locations. This is prob-
ably not a common scenario, but is shown to illustrate packaging flexibility.

Ajar.jar

HelpSet File

<maps>
 <mapref location=”c:/app/help/MyMap.jhm”/>
</maps>

<H1>
Introduction
</H1>
<P>
This topic introduces
the user to

<HI>
Getting Started
</H1>
<P>
In order to install this
 product you must

MyMap.jhm

File1.html

File2.html

..
.

..
.

 <mapID target=”file1” url=”jar:file:/c:/app/help/Ajar.jar!/File1.html”/>
 <mapID target=”file2” url=”jar:file:/c:/app/help/Ajar.jar!/File2.html”/>

.
.
.

Sun Microsystems Inc. 98 JavaHelp V2.0 Specification

Java Software
In the final scenario, the HelpSet file is bundled in the JAR file with the rest of the JavaHelp
system data.

.
.
.

<mapID target=”file1” url=”File1.html”/>
<mapID target=”file2” url=”File2.html”/>

Aja r.jar

MyMap.jhm

File1.html

File2.html

jar:file:/c:Ajar!/HelpSet.hs

<H1>
Introduction
</H1>
<P>
This topic introduces the user to
a great product.

<HI>
Getting Started
</H1>
<P>
In order to install this
 product you must insert

<maps>
 <mapref location=”MyMap.jhm”/>
</maps>HelpSet.hs

The advantage of this arrangement is that all the URLs are relative to the base URL of the Help-
Set file, and that there is no need to mention the jar: protocol within any JavaHelp system file.
This JAR, when placed in a CLASSPATH, permits a JDK1.1 application to refer to the HelpSet
within the JAR file transparently. A similar situation occurs with Applets, when the JAR file is
listed in the ARCHIVE attribute.

A.7 Merge Scenarios

The JavaHelp system provides a mechanism for merging HelpSets. You can use the merge
functionality to append TOC, index, and full-text search information from one or more Help-
Sets to that of another HelpSet.
Sun Microsystems Inc. 99 JavaHelp V2.0 Specification

Java Software
An example of where this functionality might be useful is in an application suite. The applica-
tion suite may be comprised of a collection of constituent applications. As constituent applica-
tions are purchased and installed, their help information can be merged with help information
from the other applications in the suite.

In the following scenario an application suite is comprised of three possible suite components.
The help data for each component in the suite is delivered as its own HelpSet. The suite is
shipped with a master HelpSet that lists the subcomponent HelpSets. When the HelpSet object
for the suite HelpSet file is created, each subcomponent HelpSet file (specified by means of the
<subhelpset> tag) is read to create HelpSet objects that are then merged into the containing
HelpSet. Subcomponent HelpSet that are not installed are ignored.

<helpset>

 <subhelpset location=”app1.hs”/>
 <subhelpset location=”app2.hs”/>
 <subhelpset location=”app3.hs”/>
 <subhelpset location=”app4.hs”/>
</helpset>

.
.
.

<Help-
Set>
Intro-
duction

<TOC>
Intro-
duction
<H2>

<Index>
Intro-
duction
<H2>

<HI>
JavaHelp
</H1>

<P>
This

App 3 Help Data

<Help-
Set>
Intro-
duction

<TOC>
Intro-
duction
<H2>

<Index>
Intro-
duction
<H2>

<HI>
JavaHelp
</H1>

<P>
This

App 2 Help Data

<Help-
Set>
Intro-
duction

<TOC>
Intro-
duction
<H2>

<Index>
Intro-
duction
<H2>

<HI>
JavaHelp
</H1>

<P>
This

App 1 Help Data

Master HelpSet File
Merged Display

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

For more information about merging see section 12 on page 70 or "Merging HelpSets" in the
JavaHelp System User's Guide.
Sun Microsystems Inc. 100 JavaHelp V2.0 Specification

Java Software
Appendix B
JavaHelp System 2.0 Reference Implementation

Sun's reference implementation of the JavaHelp system implements the JavaHelp system spec-
ification and supports additional useful features that are not appropriate for inclusion in the
specification at this time. Some of these features may move to the specification unchanged, oth-
ers may be replaced by equivalent or more powerful features in future versions of the specifi-
cation, and others may never show up in the specification. In all cases, these features will be
supported in future versions of the reference implementation and their presence can be assumed
when writing content targeted to this implementation.

The latest release available at the time of writing is the FCS release, released in April 1999. The
FCS release implements this version of the specification. This specification is also supported
by javadoc API documents.

Sun's reference implementation provides a search engine that can be used to create and access
a search database created from HTML-base topic files. The reference implementation also sup-
ports lightweight section Appendix D on page 108that can be embedded in HTML pages using
the <OBJECT> tag. Two example components are provided: one component provides HTML
popup functionality, the other provides in-line glossary definitions.

Information about the JavaHelp system reference implementation as well as other JavaHelp
system information is available at http://java.sun.com/products/javahelp.

B.1 HelpBroker

The HelpBroker created by default upon invocation of the createHelpBroker() method of
HelpSet is a DefaultHelpBroker.

B.2 Search Engine

The reference implementation includes a com.javax.help.search.DefaultSearchEngine
search engine. This search engine uses a single data attribute that is a relative URL that speci-
fies the directory that contains the search database. Multi-word queries are supported and are
interpreted using a relaxation algorithm described in section C.2 on page 106.

The implementation of the search engine is independent and does not depend on the rest of the
JavaHelp system. The client classes do not depend on Swing, the classes that create the search
database (the indexer) depend only on the Swing parser for the HTML IndexerKit.

B.3 Java Components in <OBJECT> Tag

The reference implementation supports a powerful <OBJECT> tag. In the reference implemen-
tation the CLASSID that denotes the class name is used to instantiate the class. The result is ex-
pected to be a lightweight AWT Component. This class is interpreted as a JavaBeans
component --the <PARAM> tag associated with the <OBJECT> tag is used to provide NAME/VALUE
pairs. Each NAME is interpreted as the name of a String property of the JavaBeans component
and the value is assigned to it.
Sun Microsystems Inc. 101 JavaHelp V2.0 Specification

http://java.sun.com/products/javahelp

Java Software
If the created Component supports the ViewAwareComponent, then the ja-
vax.swing.text.View is passed to the object through a call to setViewData. This mechanism
is very powerful and provides access to much useful information, for example, the URL to the
document where the <OBJECT> tag is present. See the documentation about the Swing text
package for more details.

B.4 Launcher Application

A simple application (hsviewer) that can be used to create a HelpBroker on a given HelpSet
is included in the FCS release. The hsviewer is described in the reference implementation re-
lease documentation.

B.5 Packaging

The reference implementation includes the following JAR files in the FCS release:

JAR file Description

jh.jar Client-side JAR. Includes all default types, and the client-side search
engine.

jhall.jar Complete JAR. Like jh.jar but also includes the indexer classes.

jhbasic.jar Minimal client-side JAR. Includes all default types except Search-
View.

jhtools.jar Tools JAR. Includes the indexer and search classes, as well as a simple
launcher class.

jsearch.jar Search JAR. Includes only the Search classes, both indexer and the
search classes.
Sun Microsystems Inc. 102 JavaHelp V2.0 Specification

Java Software
Appendix C
JavaHelp 2.0 - Relaxation Searching

C.1 Introduction

The default search engine in com.sun.java.help.search.DefaultSearchEngine uses an
effective natural language search technology that not only retrieves documents, but locates spe-
cific passages within those documents where the answers to a request are likely to be found.
The technology involves a conceptual indexing engine that analyzes documents to produce an
index of their content and a query engine that uses this index to find relevant passages in the
material.

C.2 Relaxation Ranking

The query engine makes use of a technique called "relaxation ranking" to identify and score
specific passages of material where the answer to a request is likely to be found. This is referred
to as "specific passage retrieval" and is contrasted with the traditional "document retrieval"
which retrieves documents but leaves the user with the task of finding the relevant information
within the document (or finding that the desired information is not in the document after all).

The relaxation ranking algorithm looks at the search terms and compares them to occurrences
of the same or related terms in the documents. The algorithm attempts to find passages in the
documents in which as many as possible of the query terms occur in as nearly as possible to the
same form and the same order, but will automatically relax these constraints to identify passag-
es in which not all of the terms occur or they occur in different forms or they occur in different
order or they occur with intervening words, and it assigns appropriate penalties to the passages
for the various ways in which a passage departs from an exact match of the requested informa-
tion. Passages with words in the same order as the search terms are scored better than passages
with the matching words in some other order. Passages with matching words in any order are
scored better than passages which do not contain matches for all of the requested terms.

C.3 Conceptual Indexing

Conceptual index consists of the following linguistic resources

• tokens
• lexicons
• lexicons - domain specific
• morphology
• classification

The more of the linguistic resources built into an indexer the better the conceptual index. The
best indexer incorporate all of the above resources.

IMPORTANT: Although the core search engine in the reference implementation supports all
these concepts, the indexer (search builder) available in JavaHelp 1.0 only incorporates tokens.
Details of the other concepts are included below just for the interested reader.
Sun Microsystems Inc. 103 JavaHelp V2.0 Specification

Java Software
The indexing engine can perform linguistic content processing of the indexed material to ana-
lyze the structure and interrelationships of words and phrases and to organize all of the words
and phrases from the indexed material into a conceptual taxonomy that can be browsed and can
be used to make connections between terms in a query and related terms in the material that
you'd like to find.

C.4 Morphological and Semantic Relationships

The relaxation ranking algorithm is a very effective retrieval method all by itself, but can pro-
duce significantly improved results by using morphological and semantic relationships from
the conceptual taxonomy to automatically make connections between query terms and related
terms that may occur in desired passages.

Morphological relationships refer to relationships between different inflected and derived
forms of a word, such as the relationship between "renew" and "renewed" (past tense inflec-
tion) and "renew" and "renewal" (derived normalization). Derived and inflected forms of a
word are treated as more specific terms in the conceptual taxonomy, so that a request for "re-
new" will automatically match "renewed" and "renewal" (with a small penalty).

Semantic relationships refer to relationships between terms that are more general or more spe-
cific than other terms or that imply other terms. For example, "washing" is a kind of "cleaning"
and since it is more specific than "cleaning" it will automatically be matched by a request for
"cleaning" (again with a small penalty).

Passages with exact word matches are scored better than passages with morphological matches
or matches using semantic relationships.
Sun Microsystems Inc. 104 JavaHelp V2.0 Specification

Java Software
Appendix D
JavaHelpTM 2.0 - Java Components

The reference implementation has two JComponents that can be used in HTML pages

Secondary Window Presents a secondary window for presentation of supplementary
HTML-based information

PopUp Presents a popup for presentation of supplementary HTML-based
information
Sun Microsystems Inc. 105 JavaHelp V2.0 Specification

Java Software
Appendix E
History of Changes

The following is a list of changes from the V1.0 Specification

• Added Glossary and Favorites Navigators
• Removed JDK 1.1 as a supported platform
• Added Server based JavaHelp through JSP Extensions and ServletHelpBroker
• Added comprehensive merge support
• Added Presentation controls to HelpSet file and navigator files
• Added Presentation Class and CSH changes to support presentation class
• Added customizable Toolbar support in HelpSet file
• Added implementation section to HelpSet file
• Added Dynamic CSH for components
• Update Invocation Mechanism scenarios
• Added category and topic default images to TOC file definition
Sun Microsystems Inc. 106 JavaHelp V2.0 Specification

Java Software
Sun Microsystems Inc. 107 JavaHelp V2.0 Specification

Java Software
Sun Microsystems Inc. 108 JavaHelp V2.0 Specification

Java Software
Sun Microsystems Inc. 109 JavaHelp V2.0 Specification

	Abstract
	1 Introduction
	1.1 Status of this Specification
	1.2 Change in format
	1.3 How to read this Specification
	1.4 Related Documents
	1.5 Further Reading
	1.5.1 JavaHelp Software Mailing Lists

	1.6 Your Feedback

	2 Overview
	2.1 Introduction
	2.2 Features
	2.3 Supported Platforms
	2.4 The Specification
	2.4.1 API Structure

	2.5 Main Concepts
	2.5.1 HelpSet
	2.5.1.1 HelpSet File
	2.5.1.2 Help Views and Help Navigators
	2.5.1.2.1 Standard Help Views and Help Navigators

	2.5.1.3 Map File
	2.5.1.4 Content files

	2.5.2 HelpBroker
	2.5.3 URL Protocols
	2.5.4 Search
	2.5.5 Merging
	2.5.6 Extensibility
	2.5.7 Updating Help Information
	2.5.8 File Formats

	2.6 An Example

	3 File Formats
	3.1 Overview
	3.2 HelpSet File
	3.2.1 Format
	3.2.2 Processing Instructions
	3.2.3 HelpSet properties
	3.2.4 ID Map Section
	3.2.4.1 Map Example

	3.2.5 Navigational Views Section
	3.2.5.1 View Example

	3.2.6 SubHelpSet Section
	3.2.7 Presentation Section
	3.2.7.1 Presentation Example

	3.2.8 Implementation Section
	3.2.8.1 Implementation examples

	3.3 Map Files
	3.4 Table of Contents
	3.4.1 Table of Contents Example

	3.5 Index
	3.5.1 Index Example

	3.6 Glossary
	3.6.1 Glossary Example

	3.7 Favorites
	3.7.1 Favorites Example

	3.8 Help Content
	3.9 Search Database

	4 Localization
	4.1 A Network Environment
	4.2 Localized Documents
	4.3 Full Text Search
	4.4 More Details

	5 JavaHelpTM 1.0 - Customization
	5.1 Introduction
	5.2 Help Broker
	5.3 Content Viewers
	5.4 NavigatorView and JHelpNavigator
	5.4.1 View-Specific Knowledge
	5.4.2 Different Formats
	5.4.3 Different Presentations
	5.4.4 Two Examples of Custom Views

	5.5 Search Engines
	5.6 Key-Data Map
	5.7 Using new URL protocols

	6 JavaHelpTM 1.0 - JavaBeans Help data
	6.1 Introduction
	6.2 Help Information
	6.3 Mechanism
	6.4 An Example:
	6.4.1 Manifest and JAR File
	6.4.2 The HelpSet File
	6.4.3 The Help Map

	6.5 An Alternative Arrangement
	6.5.1 Manifest and JAR file
	6.5.2 The HelpSet File
	6.5.3 The Help Map

	7 Server Based JavaHelp
	7.1 Java Server Pages
	7.2 Server Based JavaHelp Architecture
	7.3 JavaHelp Server Components
	7.3.1 JavaHelp Server Bean
	7.3.1.1 Usage

	7.3.2 JavaHelp JSP Tag Extensions
	7.3.2.1 Validate Usage

	7.3.3 Navigator Scripting Variables
	7.3.3.1 Navigator Variables
	7.3.3.1.1 Navigator Variable Usage

	7.3.3.2 tocItem Variables
	7.3.3.2.1 tocItem Usage

	7.3.3.3 indexItem Variables
	7.3.3.4 indexItem Usage
	7.3.3.5 searchItem Variables
	7.3.3.5.1 SearchItem Usage

	8 Presentation of Help Content
	8.1 Introduction
	8.2 Presentation Class
	8.2.1 Presentation Extensions
	8.2.1.1 Popup
	8.2.1.2 Window Presentations
	8.2.1.2.1 Main Window
	8.2.1.2.2 Secondary Window

	8.3 Help Author Presentation Control
	8.4 Activating Help in Presentations
	8.4.1 Field-level Context-sensitive Help
	8.4.2 Window Level Context-Sensitive Help
	8.4.3 User initiated context-sensitive help
	8.4.4 System initiated context-sensitive help
	8.4.5 Navigator
	8.4.6 Viewer

	9 Toolbar
	9.1 HelpAction Interface
	9.2 AbstractHelpAction Class
	9.3 HelpAction Extensions
	9.4 Supplied AWT/Swing HelpActions

	10 Context Sensitive Help
	10.1 Context-Sensitive Help
	1. Define the appropriate String ID-URL map,
	2. Assign an ID to each desired visual object,
	3. Enable some user action to activate the help.
	10.1.1 Defining the ID-URL map
	10.1.2 Assigning an ID to Each Visual Object
	10.1.3 Enabling a Help Action
	10.1.4 Dynamic ID Assignment
	10.1.4.1 Example Usage

	10.2 Help Support for JDialogs

	11 Content Search
	11.1 Search API
	11.2 Search Database Creation
	11.2.1 Stopwords
	11.2.2 ConfigFile Directives

	11.3 Search Database Use

	12 Merge
	12.1 Introduction
	12.2 Merging Rules
	12.3 The API
	12.4 Merging TOCs
	12.5 Merging Indices
	12.6 Merging Glossaries
	12.7 Merging Favorites
	12.8 Merging Full-Text Search Databases
	12.9 Overriding Mergetype
	12.10 Examples
	12.10.1 Example: Append Merge
	12.10.2 Example: Sort Merge
	12.10.3 Example: Unite-Append Merge

	13 JavaHelp Class Structure
	13.1 Packages
	13.2 API Structure
	13.2.1 Basic Content Presentation
	13.2.2 Detailed Control and Access
	13.2.3 Extensibility
	13.2.4 Swing components
	13.2.5 Context Sensitive Help
	13.2.6 Search

	Apendix A JavaHelp 2.0 - Scenarios
	A.1 Introduction
	A.2 Invocation Mechanisms
	A.2.1 Application Invocation
	A.2.1.1 User Initiated Context Sensitive Help
	A.2.1.2 Field-level Context-Sensitive Help
	A.2.1.3 Window-level Context-Sensitive Help
	A.2.1.4 System Initiated Context-Sensitive Help

	A.2.2 Internally Initiated Help
	A.2.2.1 Navigators
	A.2.2.2 View

	A.3 Presentation
	A.3.1 Main Window
	A.3.2 Secondary Window
	A.3.3 Popups

	A.4 Deployment
	A.4.1 Information Kiosk
	A.4.2 Stand-Alone Application
	A.4.3 Network Application
	A.4.4 Embedded Help
	A.4.5 Component Help
	A.4.6 A Help Server
	A.4.7 Web Pages and Applets

	A.5 Search Scenarios
	A.5.1 Client-Side
	A.5.2 Server-Side
	A.5.3 Stand-Alone

	A.6 Packaging Scenarios
	A.7 Merge Scenarios

	Appendix B JavaHelp System 2.0 Reference Implementation
	B.1 HelpBroker
	B.2 Search Engine
	B.3 Java Components in <OBJECT> Tag
	B.4 Launcher Application
	B.5 Packaging

	Appendix C JavaHelp 2.0 - Relaxation Searching
	C.1 Introduction
	C.2 Relaxation Ranking
	C.3 Conceptual Indexing
	C.4 Morphological and Semantic Relationships

	Appendix D JavaHelpTM 2.0 - Java Components
	Appendix E History of Changes

