22 June 2001 16:42

CHAPTER THIRTEEN

MMAP AND DMA

This chapter delves into the area of Linux memory management, with an emphasis
on techniques that are useful to the device driver writer. The material in this chap-
ter is somewhat advanced, and not everybody will need a grasp of it. Nonetheless,
many tasks can only be done through digging more deeply into the memory man-
agement subsystem; it also provides an interesting look into how an important part
of the kernel works.

The material in this chapter is divided into three sections. The first covers the
implementation of the mmap system call, which allows the mapping of device
memory directly into a user process’s address space. We then cover the kernel
kiobuf mechanism, which provides direct access to user memory from kernel
space. The kiobuf system may be used to implement “raw I/O” for certain kinds
of devices. The final section covers direct memory access (DMA) I/O operations,
which essentially provide peripherals with direct access to system memory.

Of course, all of these techniques require an understanding of how Linux memory
management works, so we start with an overview of that subsystem.

Memory Management in Linux

Rather than describing the theory of memory management in operating systems,
this section tries to pinpoint the main features of the Linux implementation of the
theory. Although you do not need to be a Linux virtual memory guru to imple-
ment mmap, a basic overview of how things work is useful. What follows is a
fairly lengthy description of the data structures used by the kernel to manage
memory. Once the necessary background has been covered, we can get into
working with these structures.

370

22 June 2001 16:42

Memory Management in Linux

Address Types

Linux is, of course, a virtual memory system, meaning that the addresses seen by
user programs do not directly correspond to the physical addresses used by the
hardware. Virtual memory introduces a layer of indirection, which allows a num-
ber of nice things. With virtual memory, programs running on the system can allo-
cate far more memory than is physically available; indeed, even a single process
can have a virtual address space larger than the system’s physical memory. Virtual
memory also allows playing a number of tricks with the process’s address space,
including mapping in device memory.

Thus far, we have talked about virtual and physical addresses, but a number of the
details have been glossed over. The Linux system deals with several types of
addresses, each with its own semantics. Unfortunately, the kernel code is not
always very clear on exactly which type of address is being used in each situation,
so the programmer must be careful.

4_f_ kernel virtual
(addresses
——
[_’ high memory
user process L low memory
—_—
[— s
_I—>
|
user process — . kernel logical
addresses
——>
-
physical memory address space — page mapping

Figure 13-1. Address types used in Linux

The following is a list of address types used in Linux. Figure 13-1 shows how
these address types relate to physical memory.

User virtual addresses
These are the regular addresses seen by user-space programs. User addresses
are either 32 or 64 bits in length, depending on the underlying hardware
architecture, and each process has its own virtual address space.

371

22 June 2001 16:42

Chapter 13: mmap and DMA

Physical addresses
The addresses used between the processor and the system’s memory. Physical
addresses are 32- or 64-bit quantities; even 32-bit systems can use 64-bit physi-
cal addresses in some situations.

Bus addresses
The addresses used between peripheral buses and memory. Often they are the
same as the physical addresses used by the processor, but that is not necessar-
ily the case. Bus addresses are highly architecture dependent, of course.

Kernel logical addresses

These make up the normal address space of the kernel. These addresses map
most or all of main memory, and are often treated as if they were physical
addresses. On most architectures, logical addresses and their associated physi-
cal addresses differ only by a constant offset. Logical addresses use the hard-
ware’s native pointer size, and thus may be unable to address all of physical
memory on heavily equipped 32-bit systems. Logical addresses are usually
stored in variables of type unsigned long or void *. Memory returned
from kmalloc has a logical address.

Kernel virtual addresses
These differ from logical addresses in that they do not necessarily have a
direct mapping to physical addresses. All logical addresses are kernel virtual
addresses; memory allocated by wvmalloc also has a virtual address (but no
direct physical mapping). The function kmap, described later in this chapter,
also returns virtual addresses. Virtual addresses are usually stored in pointer
variables.

If you have a logical address, the macro __pa() (defined in <asm/page.h>) will
return its associated physical address. Physical addresses can be mapped back to
logical addresses with __va(), but only for low-memory pages.

Different kernel functions require different types of addresses. It would be nice if
there were different C types defined so that the required address type were
explicit, but we have no such luck. In this chapter, we will be clear on which
types of addresses are used where.

High and Low Memory

The difference between logical and kernel virtual addresses is highlighted on
32-bit systems that are equipped with large amounts of memory. With 32 bits, it is
possible to address 4 GB of memory. Linux on 32-bit systems has, until recently,
been limited to substantially less memory than that, however, because of the way
it sets up the virtual address space. The system was unable to handle more mem-
ory than it could set up logical addresses for, since it needed directly mapped ker-
nel addresses for all memory.

372

22 June 2001 16:42

Memory Management in Linux

Recent developments have eliminated the limitations on memory, and 32-bit sys-
tems can now work with well over 4 GB of system memory (assuming, of course,
that the processor itself can address that much memory). The limitation on how
much memory can be directly mapped with logical addresses remains, however.
Only the lowest portion of memory (up to 1 or 2 GB, depending on the hardware
and the kernel configuration) has logical addresses; the rest (high memory) does
not. High memory can require 64-bit physical addresses, and the kernel must set
up explicit virtual address mappings to manipulate it. Thus, many kernel functions
are limited to low memory only; high memory tends to be reserved for user-space
process pages.

The term “high memory” can be confusing to some, especially since it has other
meanings in the PC world. So, to make things clear, we’ll define the terms here:

Low memory
Memory for which logical addresses exist in kernel space. On almost every
system you will likely encounter, all memory is low memory.

High memory
Memory for which logical addresses do not exist, because the system contains
more physical memory than can be addressed with 32 bits.

On i386 systems, the boundary between low and high memory is usually set at just
under 1 GB. This boundary is not related in any way to the old 640 KB limit found
on the original PC. It is, instead, a limit set by the kernel itself as it splits the 32-bit
address space between kernel and user space.

We will point out high-memory limitations as we come to them in this chapter.

The Memory Map and struct page

Historically, the kernel has used logical addresses to refer to explicit pages of
memory. The addition of high-memory support, however, has exposed an obvious
problem with that approach—Ilogical addresses are not available for high memory.
Thus kernel functions that deal with memory are increasingly using pointers to
struct page instead. This data structure is used to keep track of just about
everything the kernel needs to know about physical memory; there is one
struct page for each physical page on the system. Some of the fields of this
structure include the following:

atomic_t count;
The number of references there are to this page. When the count drops to
zero, the page is returned to the free list.

373

22 June 2001 16:42

Chapter 13: mmap and DMA

wait_queue_head_t wait;
A list of processes waiting on this page. Processes can wait on a page when a
kernel function has locked it for some reason; drivers need not normally
worry about waiting on pages, though.

void *virtual;
The kernel virtual address of the page, if it is mapped; NULL, otherwise. Low-
memory pages are always mapped; high-memory pages usually are not.

unsigned long flags;
A set of bit flags describing the status of the page. These include PG_locked,
which indicates that the page has been locked in memory, and
PG_reserved, which prevents the memory management system from work-
ing with the page at all.

There is much more information within struct page, but it is part of the deeper
black magic of memory management and is not of concern to driver writers.

The kernel maintains one or more arrays of struct page entries, which track all
of the physical memory on the system. On most systems, there is a single array,
called mem_map. On some systems, however, the situation is more complicated.
Nonuniform memory access (NUMA) systems and those with widely discontiguous
physical memory may have more than one memory map array, so code that is
meant to be portable should avoid direct access to the array whenever possible.
Fortunately, it is usually quite easy to just work with struct page pointers with-
out worrying about where they come from.

Some functions and macros are defined for translating between struct page
pointers and virtual addresses:

struct page *virt_to_page(void *kaddr) ;
This macro, defined in <asm/page.h>, takes a kernel logical address and
returns its associated struct page pointer. Since it requires a logical
address, it will not work with memory from vmalloc or high memory.

void *page_address (struct page *page) ;
Returns the kernel virtual address of this page, if such an address exists. For
high memory, that address exists only if the page has been mapped.

#include <linux/highmem.h>

void *kmap (struct page *page);

void kunmap (struct page *page);
kmap returns a kernel virtual address for any page in the system. For low-
memory pages, it just returns the logical address of the page; for high-memory
pages, kmap creates a special mapping. Mappings created with kmap should
always be freed with kunmap, a limited number of such mappings is avail-
able, so it is better not to hold on to them for too long. kmap calls are

374

22 June 2001 16:42

Memory Management in Linux

additive, so if two or more functions both call kmap on the same page the

right thing happens. Note also that kmap can sleep if no mappings are avail-
able.

We will see some uses of these functions when we get into the example code later
in this chapter.

Page Tables

When a program looks up a virtual address, the CPU must convert the address to a
physical address in order to access physical memory. The step is usually per-
formed by splitting the address into bitfields. Each bitfield is used as an index into
an array, called a page table, to retrieve either the address of the next table or the
address of the physical page that holds the virtual address.

The Linux kernel manages three levels of page tables in order to map virtual
addresses to physical addresses. The multiple levels allow the memory range to be
sparsely populated; modern systems will spread a process out across a large range
of virtual memory. It makes sense to do things that ways; it allows for runtime flexi-
bility in how things are laid out.

Note that Linux uses a three-level system even on hardware that only supports two
levels of page tables or hardware that uses a different way to map virtual
addresses to physical ones. The use of three levels in a processor-independent
implementation allows Linux to support both two-level and three-level processors
without clobbering the code with a lot of #1fdef statements. This kind of conser-
vative coding doesn’t lead to additional overhead when the kernel runs on two-
level processors, because the compiler actually optimizes out the unused level.

It is time to take a look at the data structures used to implement the paging sys-
tem. The following list summarizes the implementation of the three levels in Linux,
and Figure 13-2 depicts them.

Page Directory (PGD)
The top-level page table. The PGD is an array of pgd_t items, each of which
points to a second-level page table. Each process has its own page directory,
and there is one for kernel space as well. You can think of the page directory
as a page-aligned array of pgd_ts.

Page mid-level Directory (PMD)
The second-level table. The PMD is a page-aligned array of pmd_t items. A
pmd_t is a pointer to the third-level page table. Two-level processors have no
physical PMD; they declare their PMD as an array with a single element,
whose value is the PMD itself—we’ll see in a while how this is handled in C
and how the compiler optimizes this level away.

375

22 June 2001 16:42

Chapter 13: mmap and DMA

struct mm_struct Virtual Address (addr)
| 00111010110110011001101110110101111|
L I IL IL I
T T T T
pgd part pmd part pte part offset
PGD
pgd_t PMD
\ d t
-.‘_»pg——) pmd_t PTE
e \“ pmd t pte_t struct page physical page
—] _Emdt pte_t
_Potr- . ; _pmdt pte_t >
_pgd t | "pmd_t Totet |
d t ' = —— — | T
pg—_ K pmd_t »)
& / pmd_t ! pte_t
_pod.t I pmd t | ' “oro gt
& “\ pmd_t) pte_t
pgd_t Lo —— |
—pgd_t - i pte_t
== | pmd_t pte_t
_—— pmd_t pte_t
: _—— pte_t
: s — |
e _—
L4 .
[)
[)

Software relationships Hardware relationships
...................... » pgd_offset (mm_struct, addr); pgd_val (pgd) ;
........... » pmd_offset (pgd_t, addr); pmd_val (pmd) ;
______ » pte_offset(pmd_t, addr); pte_val (pte) ;
—————————» pte_page(pte_t);

———» page.virtual

Figure 13-2. The three levels of Linux page tables

Page Table

A page-aligned array of items, each of which is called a Page Table Entry. The
kernel uses the pte_t type for the items. A pte_t contains the physical

address of the data page.

The types introduced in this list are defined in <asm/page.h>, which must be

included by every source file that plays with paging.

The kernel doesn’t need to worry about doing page-table lookups during normal
program execution, because they are done by the hardware. Nonetheless, the ker-
nel must arrange things so that the hardware can do its work. It must build the
page tables and look them up whenever the processor reports a page fault, that is,

376

22 June 2001 16:42

Memory Management in Linux

whenever the page associated with a virtual address needed by the processor is
not present in memory. Device drivers, too, must be able to build page tables and
handle faults when implementing mmap.

It’s interesting to note how software memory management exploits the same page
tables that are used by the CPU itself. Whenever a CPU doesn’t implement page
tables, the difference is only hidden in the lowest levels of architecture-specific
code. In Linux memory management, therefore, you always talk about three-level
page tables irrespective of whether they are known to the hardware or not. An
example of a CPU family that doesn’t use page tables is the PowerPC. PowerPC
designers implemented a hash algorithm that maps virtual addresses into a one-
level page table. When accessing a page that is already in memory but whose
physical address has expired from the CPU caches, the CPU needs to read memory
only once, as opposed to the two or three accesses required by a multilevel page
table approach. The hash algorithm, like multilevel tables, makes it possible to
reduce use of memory in mapping virtual addresses to physical ones.

Irrespective of the mechanisms used by the CPU, the Linux software implementa-
tion is based on three-level page tables, and the following symbols are used to
access them. Both <asm/page.h> and <asm/pgtable.h> must be included for
all of them to be accessible.

PTRS_PER_PGD

PTRS_PER_PMD

PTRS_PER_PTE
The size of each table. Two-level processors set PTRS_PER_PMD to 1, to
avoid dealing with the middle level.

unsigned pgd_val (pgd_t pgd)

unsigned pmd_val (pmd_t pmd)

unsigned pte_val (pte_t pte)
These three macros are used to retrieve the unsigned value from the typed
data item. The actual type used varies depending on the underlying architec-
ture and kernel configuration options; it is usually either unsigned long or,
on 32-bit processors supporting high memory, unsigned long long.
SPARCG64 processors use unsigned int. The macros help in using strict data
typing in source code without introducing computational overhead.

pgd_t * pgd_offset(struct mm_struct * mm, unsigned long
address)
pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
pte_t * pte_offset(pmd_t * dir, unsigned long address)
These inline functions® are used to retrieve the pgd, pmd, and pte entries

* On 32-bit SPARC processors, the functions are not inline but rather real extern func-
tions, which are not exported to modularized code. Therefore you won’t be able to use
these functions in a module running on the SPARC, but you won'’t usually need to.

377

22 June 2001 16:42

Chapter 13: mmap and DMA

associated with address. Page-table lookup begins with a pointer to struct
mm_struct. The pointer associated with the memory map of the current pro-
cess is current->mm, while the pointer to kernel space is described by
&init_mm. Two-level processors define pmd_offset(dir,add) as
(pmd_t *)dir, thus folding the pmd over the pgd. Functions that scan page
tables are always declared as inline, and the compiler optimizes out any
pmd lookup.

struct page *pte_page(pte_t pte)
This function returns a pointer to the struct page entry for the page in this
page-table entry. Code that deals with page-tables will generally want to use
pte_page rather than pte val, since pte_page deals with the processor-depen-
dent format of the page-table entry and returns the struct page pointer,
which is usually what’s needed.

pte_present (pte_t pte)

This macro returns a boolean value that indicates whether the data page is
currently in memory. This is the most used of several functions that access the
low bits in the pte—the bits that are discarded by pte_page. Pages may be
absent, of course, if the kernel has swapped them to disk (or if they have
never been loaded). The page tables themselves, however, are always present
in the current Linux implementation. Keeping page tables in memory simpli-
fies the kernel code because pgd_offset and friends never fail; on the other
hand, even a process with a “resident storage size” of zero keeps its page
tables in real RAM, wasting some memory that might be better used else-
where.

Each process in the system has a struct mm_struct structure, which contains
its page tables and a great many other things. It also contains a spinlock called
page_table_lock, which should be held while traversing or modifying the
page tables.

Just seeing the list of these functions is not enough for you to be proficient in the
Linux memory management algorithms; real memory management is much more
complex and must deal with other complications, like cache coherence. The previ-
ous list should nonetheless be sufficient to give you a feel for how page manage-
ment is implemented; it is also about all that you will need to know, as a device
driver writer, to work occasionally with page tables. You can get more information
from the include/asm and mm subtrees of the kernel source.

Virtual Memory Areas

Although paging sits at the lowest level of memory management, something more
is necessary before you can use the computer’s resources efficiently. The kernel
needs a higher-level mechanism to handle the way a process sees its memory.
This mechanism is implemented in Linux by means of virtual memory areas, which
are typically referred to as areas or VMAs.

378

22 June 2001 16:42

Memory Management in Linux

An area is a homogeneous region in the virtual memory of a process, a contiguous
range of addresses with the same permission flags. It corresponds loosely to the
concept of a “segment,” although it is better described as “a memory object with
its own properties.” The memory map of a process is made up of the following:

e An area for the program’s executable code (often called text).

e One area each for data, including initialized data (that which has an explicitly
assigned value at the beginning of execution), uninitialized data (BSS),* and
the program stack.

e One area for each active memory mapping.

The memory areas of a process can be seen by looking in /proc/pid/maps (where
pid, of course, is replaced by a process ID). /proc/self is a special case of
/proc/pid, because it always refers to the current process. As an example, here are
a couple of memory maps, to which we have added short comments after a sharp
sign:

morgana.root# cat /proc/l/maps # look at init

08048000-0804e000 r-xp 00000000 08:01 51297 /sbin/init # text
0804e000-08050000 rw-p 00005000 08:01 51297 /sbin/init # data
08050000-08054000 rwxp 00000000 00:00 O # zero-mapped bss
40000000-40013000 r-xp 00000000 08:01 39003 /1ib/1d-2.1.3.s0 # text
40013000-40014000 rw-p 00012000 08:01 39003 /1ib/1d-2.1.3.s0 # data
40014000-40015000 rw-p 00000000 00:00 O # bss for 1ld.so
4001b000-40108000 r-xp 00000000 08:01 39006 /1ib/1libc-2.1.3.s0 # text
40108000-4010c000 rw-p 000ec000 08:01 39006 /1lib/1libc-2.1.3.s0 # data
4010c000-40110000 rw-p 00000000 00:00 O # bss for libc.so
bfffe000-c0000000 rwxp f££££000 00:00 O # zero-mapped stack

morgana.root# rsh wolf head /proc/self/maps #### alpha-axp: static ecoff
000000011££f£fe000-0000000120000000 rwxp 0000000000000000 00:00 O # stack
0000000120000000-0000000120014000 r-xp 0000000000000000 08:03 2844 # text
0000000140000000-0000000140002000 rwxp 0000000000014000 08:03 2844 # data
0000000140002000-0000000140008000 rwxp 0000000000000000 00:00 O # bss

The fields in each line are as follows:
start-end perm offset major:minor inode image.

Each field in /proc/¥maps (except the image name) corresponds to a field in
struct vm_area_struct, and is described in the following list.

start
end
The beginning and ending virtual addresses for this memory area.

* The name BSS is a historical relic, from an old assembly operator meaning “Block started
by symbol.” The BSS segment of executable files isn’t stored on disk, and the kernel
maps the zero page to the BSS address range.

379

22 June 2001 16:42

Chapter 13: mmap and DMA

perm
A bit mask with the memory area’s read, write, and execute permissions. This
field describes what the process is allowed to do with pages belonging to the
area. The last character in the field is either p for “private” or s for “shared.”

offset
Where the memory area begins in the file that it is mapped to. An offset of
zero, of course, means that the first page of the memory area corresponds to
the first page of the file.

major

minor
The major and minor numbers of the device holding the file that has been
mapped. Confusingly, for device mappings, the major and minor numbers
refer to the disk partition holding the device special file that was opened by
the user, and not the device itself.

inode
The inode number of the mapped file.

image
The name of the file (usually an executable image) that has been mapped.

A driver that implements the mmap method needs to fill a VMA structure in the
address space of the process mapping the device. The driver writer should there-
fore have at least a minimal understanding of VMAs in order to use them.

Let’s look at the most important fields in struct vm_area_struct (defined in
<linux/mm.h>). These fields may be used by device drivers in their mmap
implementation. Note that the kernel maintains lists and trees of VMAs to optimize
area lookup, and several fields of vim_area_struct are used to maintain this
organization. VMAs thus can’t be created at will by a driver, or the structures will
break. The main fields of VMAs are as follows (note the similarity between these
fields and the /proc output we just saw):

unsigned long vm_start;

unsigned long vm_end;
The virtual address range covered by this VMA. These fields are the first two
fields shown in /proc/*/maps.

struct file *vm_file;
A pointer to the struct file structure associated with this area (if any).

unsigned long vm_pgoff;
The offset of the area in the file, in pages. When a file or device is mapped,
this is the file position of the first page mapped in this area.

380

22 June 2001 16:42

Memory Management in Linux

unsigned long vm_flags;
A set of flags describing this area. The flags of the most interest to device
driver writers are VM_IO and VM_RESERVED. VM_IO marks a VMA as being a
memory-mapped I/O region. Among other things, the VM_IO flag will prevent
the region from being included in process core dumps. VM_RESERVED tells
the memory management system not to attempt to swap out this VMA; it
should be set in most device mappings.

struct vm_operations_struct *vm_ops;
A set of functions that the kernel may invoke to operate on this memory area.
Its presence indicates that the memory area is a kernel “object” like the
struct file we have been using throughout the book.

void *vm_private_data;
A field that may be used by the driver to store its own information.

Like struct wvm_area_struct, the vm_operations_struct is defined in
<linux/mm.h>; it includes the operations listed next. These operations are the
only ones needed to handle the process’s memory needs, and they are listed in
the order they are declared. Later in this chapter, some of these functions will be
implemented; they will be described more completely at that point.

void (*open) (struct vm_area_struct *vma) ;
The open method is called by the kernel to allow the subsystem implementing
the VMA to initialize the area, adjust reference counts, and so forth. This
method will be invoked any time that a new reference to the VMA is made
(when a process forks, for example). The one exception happens when the
VMA is first created by mmap; in this case, the driver's mmap method is called
instead.

void (*close) (struct vm_area_struct *vma) ;
When an area is destroyed, the kernel calls its close operation. Note that
there’s no usage count associated with VMAs; the area is opened and closed
exactly once by each process that uses it.

void (*unmap) (struct vm_area_struct *vma, unsigned long
addr, size_t len);
The kernel calls this method to “unmap” part or all of an area. If the entire
area is unmapped, then the kernel calls wvm_ops->close as soon as
vm_ops->unmap returns.

void (*protect) (struct vm_area_struct *vma, unsigned long,
size_t, unsigned int newprot);
This method is intended to change the protection on a memory area, but is
currently not used. Memory protection is handled by the page tables, and the
kernel sets up the page-table entries separately.

381

22 June 2001 16:42

Chapter 13: mmap and DMA

int (*sync) (struct vm_area_struct *vma, unsigned long,
size_t, unsigned int flags);
This method is called by the msync system call to save a dirty memory region
to the storage medium. The return value is expected to be 0 to indicate suc-
cess and negative if there was an error.

struct page * (*nopage) (struct vm_area_struct *vma, unsigned
long address, int write_access);

When a process tries to access a page that belongs to a valid VMA, but that is
currently not in memory, the nopage method is called (if it is defined) for the
related area. The method returns the struct page pointer for the physical
page, after, perhaps, having read it in from secondary storage. If the nopage
method isn’t defined for the area, an empty page is allocated by the kernel.
The third argument, write_access, counts as “no-share”: a nonzero value
means the page must be owned by the current process, whereas 0 means that
sharing is possible.

struct page * (*wppage) (struct vm_area_struct *vma, unsigned
long address, struct page *page);

This method handles write-protected page faults but is currently unused. The
kernel handles attempts to write over a protected page without invoking the
area-specific callback. Write-protect faults are used to implement copy-on-
write. A private page can be shared across processes until one process writes
to it. When that happens, the page is cloned, and the process writes on its
own copy of the page. If the whole area is marked as read-only, a SIGSEGV
is sent to the process, and the copy-on-write is not performed.

int (*swapout) (struct page *page, struct file *file);
This method is called when a page is selected to be swapped out. A return
value of 0 signals success; any other value signals an error. In case of error,
the process owning the page is sent a SIGBUS. It is highly unlikely that a
driver will ever need to implement swapout; device mappings are not some-
thing that the kernel can just write to disk.

That concludes our overview of Linux memory management data structures. With
that out of the way, we can now proceed to the implementation of the mmap sys-
tem call.

The mmap Device Operation

Memory mapping is one of the most interesting features of modern Unix systems.
As far as drivers are concerned, memory mapping can be used to provide user
programs with direct access to device memory.

A definitive example of mmap usage can be seen by looking at a subset of the vir-
tual memory areas for the X Window System server:

382

22 June 2001 16:42

The mmap Device Operation

cat /proc/731/maps

08048000-08327000 r-xp 00000000 08:01 55505 /usr/X11R6/bin/XF86_SVGA
08327000-08369000 rw-p 002de000 08:01 55505 /usr/X11R6/bin/XF86_SVGA
40015000-40019000 rw-s fe2fc000 08:01 10778 /dev/mem
40131000-40141000 rw-s 000a0000 08:01 10778 /dev/mem
40141000-40941000 rw-s £4000000 08:01 10778 /dev/mem

The full list of the X server’'s VMAs is lengthy, but most of the entries are not of
interest here. We do see, however, three separate mappings of /dev/mem, which
give some insight into how the X server works with the video card. The first map-
ping shows a 16 KB region mapped at £e2£c000. This address is far above the
highest RAM address on the system; it is, instead, a region of memory on a PCI
peripheral (the video card). It will be a control region for that card. The middle
mapping is at a0000, which is the standard location for video RAM in the 640 KB
ISA hole. The last /dev/mem mapping is a rather larger one at £4000000 and is
the video memory itself. These regions can also be seen in /proc/iomem:

000a0000-000bffff : Video RAM area
f4000000-f4ffffff : Matrox Graphics, Inc. MGA G200 AGP
fe2fc000-fe2fffff : Matrox Graphics, Inc. MGA G200 AGP

Mapping a device means associating a range of user-space addresses to device
memory. Whenever the program reads or writes in the assigned address range, it
is actually accessing the device. In the X server example, using mmap allows
quick and easy access to the video card’s memory. For a performance-critical
application like this, direct access makes a large difference.

As you might suspect, not every device lends itself to the mmap abstraction; it
makes no sense, for instance, for serial ports and other stream-oriented devices.
Another limitation of mmap is that mapping is PAGE_SIZE grained. The kernel
can dispose of virtual addresses only at the level of page tables; therefore, the
mapped area must be a multiple of PAGE_SIZE and must live in physical memory
starting at an address that is a multiple of PAGE_SIZE. The kernel accommodates
for size granularity by making a region slightly bigger if its size isn’t a multiple of
the page size.

These limits are not a big constraint for drivers, because the program accessing the
device is device dependent anyway. It needs to know how to make sense of the
memory region being mapped, so the PAGE_SIZE alignment is not a problem. A
bigger constraint exists when ISA devices are used on some non-x86 platforms,
because their hardware view of ISA may not be contiguous. For example, some
Alpha computers see ISA memory as a scattered set of 8-bit, 16-bit, or 32-bit items,
with no direct mapping. In such cases, you can’t use mmap at all. The inability to
perform direct mapping of ISA addresses to Alpha addresses is due to the incom-
patible data transfer specifications of the two systems. Wh